Skip to main content

Advertisement

Log in

Modeling Secondary Organic Aerosols in China: State of the Art and Perspectives

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Fine particulate matter (PM2.5) is a huge environmental challenge in China. Based on field studies, secondary organic aerosols (SOA) contribute greatly to PM2.5 formation in many locations. Modeling SOA is a frontier research field in air quality and a rapidly developing field internationally. This review intends to provide a state-of-the-art understanding of the current status of SOA modeling in China and recommendations for future research.

Recent Findings

SOA has been shown to exhibit significant spatial and seasonal variations in China. The traditional pathway of SOA from the condensation of semi-volatile products by the oxidation of volatile organic compounds (VOCs) tends to significantly underestimate the observations. This gap has been greatly improved by considering new pathways such as the heterogeneous reactions of dicarbonyls and epoxides, the aging of primary organic aerosols and SOA, the oxidation of semi- and intermediate VOCs from emissions, and the aqueous-phase reactions of water-soluble organic species. In addition to these mechanisms, the contributions of specific precursors and sources also depend on the emission inventory of precursors, which has significant uncertainties. The interactions between anthropogenic and biogenic sources and meteorological facteros affect SOA formation. Overall, SOA plays an essential role in the budget of solar radiative forcing and the new particle formation.

Summary

This review focuses on the advances in modeling SOA in China since 2000. Parameterization of SOA mechanisms and properties and the emission and meteorology inputs should be improved to understand the characteristics and influences of SOA in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Donkelaar AV, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect. 2010;118(6):847–55. https://doi.org/10.1289/ehp.0901623.

    Article  CAS  Google Scholar 

  2. Zheng M, Yan C, Zhu T. Understanding sources of fine particulate matter in China. Philos Trans R Soc A Math Phys Eng Sci. 2020;378(2183):20190325. https://doi.org/10.1098/rsta.2019.0325.

    Article  CAS  Google Scholar 

  3. Zhai S, Jacob DJ, Wang X, Shen L, Li K, Zhang Y, et al. Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmos Chem Phys. 2019;19(16):11031–41. https://doi.org/10.5194/acp-19-11031-2019.

    Article  CAS  Google Scholar 

  4. Zhu Y, Huang L, Li J, Ying Q, Zhang H, Liu X, et al. Sources of particulate matter in China: insights from source apportionment studies published in 1987–2017. Environ Int. 2018;115:343–57. https://doi.org/10.1016/j.envint.2018.03.037.

    Article  CAS  Google Scholar 

  5. Zhang Y-L, Cao F. Fine particulate matter (PM2.5) in China at a city level. Sci Rep. 2015;5(1):14884. https://doi.org/10.1038/srep14884.

    Article  CAS  Google Scholar 

  6. Wang X, Cheng H, Che H, Sun J, Lu H, Qiang M, et al. Modern dust aerosol availability in northwestern China. Sci Rep. 2017;7(1):8741. https://doi.org/10.1038/s41598-017-09458-w.

    Article  CAS  Google Scholar 

  7. Guo S, Hu M, Zamora ML, Peng J, Shang D, Zheng J, et al. Elucidating severe urban haze formation in China. Proc Natl Acad Sci. 2014;111(49):17373–8. https://doi.org/10.1073/pnas.1419604111.

    Article  CAS  Google Scholar 

  8. Cao J-J, Shen Z-X, Chow JC, Watson JG, Lee S-C, Tie X-X, et al. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J Air Waste Manag Assoc. 2012;62(10):1214–26. https://doi.org/10.1080/10962247.2012.701193.

    Article  CAS  Google Scholar 

  9. Huang R-J, Zhang Y, Bozzetti C, Ho K-F, Cao J-J, Han Y, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 2014;514(7521):218–22. https://doi.org/10.1038/nature13774.

    Article  CAS  Google Scholar 

  10. Sun Y, Jiang Q, Wang Z, Fu P, Li J, Yang T, et al. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J Geophys Res Atmos. 2014;119(7):4380–98. https://doi.org/10.1002/2014JD021641.

    Article  Google Scholar 

  11. Wang G, Zhang R, Gomez ME, Yang L, Levy Zamora M, Hu M, et al. Persistent sulfate formation from London Fog to Chinese haze. Proc Natl Acad Sci. 2016;113(48):13630–5. https://doi.org/10.1073/pnas.1616540113.

    Article  CAS  Google Scholar 

  12. Wang J, Li J, Ye J, Zhao J, Wu Y, Hu J, et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat Commun. 2020;11(1):2844. https://doi.org/10.1038/s41467-020-16683-x.

    Article  CAS  Google Scholar 

  13. Yang T, Sun Y, Zhang W, Wang Z, Liu X, Fu P, et al. Evolutionary processes and sources of high-nitrate haze episodes over Beijing, Spring. J Environ Sci. 2017;54:142–51. https://doi.org/10.1016/j.jes.2016.04.024.

    Article  CAS  Google Scholar 

  14. Sun J, Liang M, Shi Z, Shen F, Li J, Huang L, et al. Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere. 2019;221:452–63. https://doi.org/10.1016/j.chemosphere.2018.12.200.

    Article  CAS  Google Scholar 

  15. Tsimpidi AP, Karydis VA, Pandis SN, Lelieveld J. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets. Atmos Chem Phys. 2016;16(14):8939–62. https://doi.org/10.5194/acp-16-8939-2016.

    Article  CAS  Google Scholar 

  16. Zhang Q, Jimenez JL, Canagaratna MR, Ulbrich IM, Ng NL, Worsnop DR, et al. Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Anal Bioanal Chem. 2011;401(10):3045–67. https://doi.org/10.1007/s00216-011-5355-y.

    Article  CAS  Google Scholar 

  17. Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, et al. Evolution of organic aerosols in the atmosphere. Science. 2009;326(5959):1525–9. https://doi.org/10.1126/science.1180353.

    Article  CAS  Google Scholar 

  18. Brown H, Liu X, Feng Y, Jiang Y, Wu M, Lu Z, et al. Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5). Atmos Chem Phys. 2018;18(24):17745–68. https://doi.org/10.5194/acp-18-17745-2018.

    Article  CAS  Google Scholar 

  19. Thornhill GD, Collins WJ, Kramer RJ, Olivié D, Skeie RB, O’Connor FM, et al. Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmos Chem Phys. 2021;21(2):853–74. https://doi.org/10.5194/acp-21-853-2021.

    Article  CAS  Google Scholar 

  20. Tilmes S, Hodzic A, Emmons LK, Mills MJ, Gettelman A, Kinnison DE, et al. Climate forcing and trends of organic aerosols in the Community Earth System Model (CESM2). J Adv Model Earth Syst. 2019;11(12):4323–51. https://doi.org/10.1029/2019MS001827.

    Article  Google Scholar 

  21. Yli-Juuti T, Mielonen T, Heikkinen L, Arola A, Ehn M, Isokääntä S, et al. Significance of the organic aerosol driven climate feedback in the boreal area. Nat Commun. 2021;12(1):5637. https://doi.org/10.1038/s41467-021-25850-7.

    Article  CAS  Google Scholar 

  22. Zhu J, Penner JE, Lin G, Zhou C, Xu L, Zhuang B. Mechanism of SOA formation determines magnitude of radiative effects. Proc Natl Acad Sci. 2017;114(48):12685–90. https://doi.org/10.1073/pnas.1712273114.

    Article  CAS  Google Scholar 

  23. Mauderly JL, Chow JC. Health effects of organic aerosols. Inhal Toxicol. 2008;20(3):257–88. https://doi.org/10.1080/08958370701866008.

    Article  CAS  Google Scholar 

  24. Ridley DA, Heald CL, Ridley KJ, Kroll JH. Causes and consequences of decreasing atmospheric organic aerosol in the United States. Proc Natl Acad Sci. 2018;115(2):290–5. https://doi.org/10.1073/pnas.1700387115.

    Article  CAS  Google Scholar 

  25. Nault BA, Jo DS, McDonald BC, Campuzano-Jost P, Day DA, Hu W, et al. Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmos Chem Phys. 2021;21(14):11201–24. https://doi.org/10.5194/acp-21-11201-2021.

    Article  CAS  Google Scholar 

  26. Pye HOT, Ward-Caviness CK, Murphy BN, Appel KW, Seltzer KM. Secondary organic aerosol association with cardiorespiratory disease mortality in the United States. Nat Commun. 2021;12(1):7215. https://doi.org/10.1038/s41467-021-27484-1.

    Article  CAS  Google Scholar 

  27. Zhao J, Qiu Y, Zhou W, Xu W, Wang J, Zhang Y, et al. Organic aerosol processing during winter severe haze episodes in Beijing. J Geophys Res Atmos. 2019;124(17–18):10248–63. https://doi.org/10.1029/2019JD030832.

    Article  CAS  Google Scholar 

  28. Wang H, Wang Q, Gao Y, Zhou M, Jing S, Qiao L, et al. Estimation of secondary organic aerosol formation during a photochemical smog episode in Shanghai, China. J Geophys Res Atmos. 2020;125(7):e2019JD032033. https://doi.org/10.1029/2019JD032033.

    Article  CAS  Google Scholar 

  29. Sun J, Zhang Q, Canagaratna MR, Zhang Y, Ng NL, Sun Y, et al. Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmos Environ. 2010;44(1):131–40. https://doi.org/10.1016/j.atmosenv.2009.03.020.

    Article  CAS  Google Scholar 

  30. Huang XF, He LY, Hu M, Canagaratna MR, Sun Y, Zhang Q, et al. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmos Chem Phys. 2010;10(18):8933–45. https://doi.org/10.5194/acp-10-8933-2010.

    Article  CAS  Google Scholar 

  31. Sun Y, Wang Z, Dong H, Yang T, Li J, Pan X, et al. Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmos Environ. 2012;51:250–9. https://doi.org/10.1016/j.atmosenv.2012.01.013.

    Article  CAS  Google Scholar 

  32. Xu W, Han T, Du W, Wang Q, Chen C, Zhao J, et al. Effects of aqueous-phase and photochemical processing on secondary organic aerosol formation and evolution in Beijing, China. Environ Sci Technol. 2017;51(2):762–70. https://doi.org/10.1021/acs.est.6b04498.

    Article  CAS  Google Scholar 

  33. • Miao R, Chen Q, Shrivastava M, Chen Y, Zhang L, Hu J, et al. Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels. Atmos Chem Phys. 2021;21(21):16183–201. https://doi.org/10.5194/acp-21-16183-2021This paper compared SOA predictions by two complex and simple schemes with observations and accessed the contributions of different precursors and sources to SOA in major heavily polluted regions.

  34. Zhou W, Wang Q, Zhao X, Xu W, Chen C, Du W, et al. Characterization and source apportionment of organic aerosol at 260 m on a meteorological tower in Beijing, China. Atmos Chem Phys. 2018;18(6):3951–68. https://doi.org/10.5194/acp-18-3951-2018.

    Article  CAS  Google Scholar 

  35. Qiu Y, Xie Q, Wang J, Xu W, Li L, Wang Q, et al. Vertical characterization and source apportionment of water-soluble organic aerosol with high-resolution aerosol mass spectrometry in Beijing, China. ACS Earth Space Chem. 2019;3(2):273–84. https://doi.org/10.1021/acsearthspacechem.8b00155.

    Article  CAS  Google Scholar 

  36. Sun Y, Du W, Wang Q, Zhang Q, Chen C, Chen Y, et al. Real-time characterization of aerosol particle composition above the urban canopy in Beijing: insights into the interactions between the atmospheric boundary layer and aerosol chemistry. Environ Sci Technol. 2015;49(19):11340–7. https://doi.org/10.1021/acs.est.5b02373.

    Article  CAS  Google Scholar 

  37. Zhou W, Gao M, He Y, Wang Q, Xie C, Xu W, et al. Response of aerosol chemistry to clean air action in Beijing, China: insights from two-year ACSM measurements and model simulations. Environ Pollut. 2019;255:113345. https://doi.org/10.1016/j.envpol.2019.113345.

    Article  CAS  Google Scholar 

  38. Zhang JK, Sun Y, Liu ZR, Ji DS, Hu B, Liu Q, et al. Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos Chem Phys. 2014;14(6):2887–903. https://doi.org/10.5194/acp-14-2887-2014.

    Article  CAS  Google Scholar 

  39. Sun Y, Xu W, Zhang Q, Jiang Q, Canonaco F, Prévôt ASH, et al. Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China. Atmos Chem Phys. 2018;18(12):8469–89. https://doi.org/10.5194/acp-18-8469-2018.

    Article  CAS  Google Scholar 

  40. Chen S, Xu L, Zhang Y, Chen B, Wang X, Zhang X, et al. Direct observations of organic aerosols in common wintertime hazes in North China: insights into direct emissions from Chinese residential stoves. Atmos Chem Phys. 2017;17(2):1259–70. https://doi.org/10.5194/acp-17-1259-2017.

    Article  CAS  Google Scholar 

  41. Wang K, Huang RJ, Brüggemann M, Zhang Y, Yang L, Ni H, et al. Urban organic aerosol composition in eastern China differs from north to south: molecular insight from a liquid chromatography–mass spectrometry (Orbitrap) study. Atmos Chem Phys. 2021;21(11):9089–104. https://doi.org/10.5194/acp-21-9089-2021.

    Article  CAS  Google Scholar 

  42. Fan Y, Liu CQ, Li L, Ren L, Ren H, Zhang Z, et al. Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China. Atmos Chem Phys. 2020;20(1):117–37. https://doi.org/10.5194/acp-20-117-2020.

    Article  CAS  Google Scholar 

  43. Tang R, Wu Z, Li X, Wang Y, Shang D, Xiao Y, et al. Primary and secondary organic aerosols in summer 2016 in Beijing. Atmos Chem Phys. 2018;18(6):4055–68. https://doi.org/10.5194/acp-18-4055-2018.

    Article  CAS  Google Scholar 

  44. Yang C, Hong Z, Chen J, Xu L, Zhuang M, Huang Z. Characteristics of secondary organic aerosols tracers in PM2.5 in three central cities of the Yangtze river delta, China. Chemosphere. 2022;293:133637. https://doi.org/10.1016/j.chemosphere.2022.133637.

    Article  CAS  Google Scholar 

  45. Ding X, Wang X-M, Gao B, Fu X-X, He Q-F, Zhao X-Y, et al. Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China. J Geophys Res Atmos. 2012;117(D5). https://doi.org/10.1029/2011JD016596.

  46. Yuan Q, Lai S, Song J, Ding X, Zheng L, Wang X, et al. Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: the importance of atmospheric oxidants. Environ Pollut. 2018;240:884–93. https://doi.org/10.1016/j.envpol.2018.05.009.

    Article  CAS  Google Scholar 

  47. Gao Y, Wang H, Zhang X, Jing SA, Peng Y, Qiao L, et al. Estimating secondary organic aerosol production from toluene photochemistry in a megacity of China. Environ Sci Technol. 2019;53(15):8664–71. https://doi.org/10.1021/acs.est.9b00651.

    Article  CAS  Google Scholar 

  48. Kuang Y, He Y, Xu W, Yuan B, Zhang G, Ma Z, et al. Photochemical aqueous-phase reactions induce rapid daytime formation of oxygenated organic aerosol on the North China Plain. Environ Sci Technol. 2020;54(7):3849–60. https://doi.org/10.1021/acs.est.9b06836.

    Article  CAS  Google Scholar 

  49. Chang D, Wang Z, Guo J, Li T, Liang Y, Kang L, et al. Characterization of organic aerosols and their precursors in southern China during a severe haze episode in January 2017. Sci Total Environ. 2019;691:101–11. https://doi.org/10.1016/j.scitotenv.2019.07.123.

    Article  CAS  Google Scholar 

  50. Wang Y, Hu M, Hu W, Zheng J, Niu H, Fang X, et al. Secondary formation of aerosols under typical high-humidity conditions in wintertime Sichuan Basin, China: a contrast to the North China Plain. J Geophys Res Atmos. 2021;126(10):e2021JD034560. https://doi.org/10.1029/2021JD034560.

    Article  CAS  Google Scholar 

  51. Hoyle CR, Boy M, Donahue NM, Fry JL, Glasius M, Guenther A, et al. A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmos Chem Phys. 2011;11(1):321–43. https://doi.org/10.5194/acp-11-321-2011.

    Article  CAS  Google Scholar 

  52. Carlton AG, Wiedinmyer C, Kroll JH. A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos Chem Phys. 2009;9(14):4987–5005. https://doi.org/10.5194/acp-9-4987-2009.

    Article  CAS  Google Scholar 

  53. Ziemann PJ, Atkinson R. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem Soc Rev. 2012;41(19):6582–605. https://doi.org/10.1039/C2CS35122F.

    Article  CAS  Google Scholar 

  54. Ervens B, Turpin BJ, Weber RJ. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos Chem Phys. 2011;11(21):11069–102. https://doi.org/10.5194/acp-11-11069-2011.

    Article  CAS  Google Scholar 

  55. Gentner DR, Jathar SH, Gordon TD, Bahreini R, Day DA, El Haddad I, et al. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ Sci Technol. 2017;51(3):1074–93. https://doi.org/10.1021/acs.est.6b04509.

    Article  CAS  Google Scholar 

  56. Charan SM, Huang Y, Seinfeld JH. Computational simulation of secondary organic aerosol formation in laboratory chambers. Chem Rev. 2019;119(23):11912–44. https://doi.org/10.1021/acs.chemrev.9b00358.

    Article  CAS  Google Scholar 

  57. Tsigaridis K, Kanakidou M. The present and future of secondary organic aerosol direct forcing on climate. Curr Clim Change Rep. 2018;4(2):84–98. https://doi.org/10.1007/s40641-018-0092-3.

    Article  Google Scholar 

  58. Moise T, Flores JM, Rudich Y. Optical properties of secondary organic aerosols and their changes by chemical processes. Chem Rev. 2015;115(10):4400–39. https://doi.org/10.1021/cr5005259.

    Article  CAS  Google Scholar 

  59. Chen Q, Fu T-M, Hu J, Ying Q, Zhang L. Modelling secondary organic aerosols in China. Natl Sci Rev. 2017;4(6):806–9. https://doi.org/10.1093/nsr/nwx143.

    Article  CAS  Google Scholar 

  60. Wainwright CD, Pierce JR, Liggio J, Strawbridge KB, Macdonald AM, Leaitch RW. The effect of model spatial resolution on Secondary Organic Aerosol predictions: a case study at Whistler, BC, Canada. Atmos Chem Phys. 2012;12(22):10911–23. https://doi.org/10.5194/acp-12-10911-2012.

    Article  CAS  Google Scholar 

  61. Oak YJ, Park RJ, Jo DS, Hodzic A, Jimenez JL, Campuzano-Jost P, et al. Evaluation of secondary organic erosol (SOA) simulations for Seoul, Korea. J Adv Model Earth Syst. 2022;14(2):e2021MS002760. https://doi.org/10.1029/2021MS002760.

    Article  Google Scholar 

  62. Dunlea EJ, DeCarlo PF, Aiken AC, Kimmel JR, Peltier RE, Weber RJ, et al. Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmos Chem Phys. 2009;9(19):7257–87. https://doi.org/10.5194/acp-9-7257-2009.

    Article  CAS  Google Scholar 

  63. Marais EA, Jacob DJ, Jimenez JL, Campuzano-Jost P, Day DA, Hu W, et al. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls. Atmos Chem Phys. 2016;16(3):1603–18. https://doi.org/10.5194/acp-16-1603-2016.

    Article  CAS  Google Scholar 

  64. Woody MC, West JJ, Jathar SH, Robinson AL, Arunachalam S. Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ. Atmos Chem Phys. 2015;15(12):6929–42. https://doi.org/10.5194/acp-15-6929-2015.

    Article  CAS  Google Scholar 

  65. Woody MC, Baker KR, Hayes PL, Jimenez JL, Koo B, Pye HOT. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS. Atmos Chem Phys. 2016;16(6):4081–100. https://doi.org/10.5194/acp-16-4081-2016.

    Article  CAS  Google Scholar 

  66. Chatani S, Matsunaga SN, Nakatsuka S. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmos Environ. 2015;120:38–50. https://doi.org/10.1016/j.atmosenv.2015.08.086.

    Article  CAS  Google Scholar 

  67. Morino Y, Chatani S, Tanabe K, Fujitani Y, Morikawa T, Takahashi K, et al. Contributions of condensable particulate matter to atmospheric organic aerosol over Japan. Environ Sci Technol. 2018;52(15):8456–66. https://doi.org/10.1021/acs.est.8b01285.

    Article  CAS  Google Scholar 

  68. Yahya K, Wang K, Gudoshava M, Glotfelty T, Zhang Y. Application of WRF/Chem over North America under the AQMEII Phase 2: Part I. Comprehensive evaluation of 2006 simulation. Atmos Environ. 2015;115:733–55. https://doi.org/10.1016/j.atmosenv.2014.08.063.

    Article  CAS  Google Scholar 

  69. Shrivastava M, Fast J, Easter R, Gustafson WI Jr, Zaveri RA, Jimenez JL, et al. Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach. Atmos Chem Phys. 2011;11(13):6639–62. https://doi.org/10.5194/acp-11-6639-2011.

    Article  CAS  Google Scholar 

  70. Hata H, Inoue K, Kokuryo K, Tonokura K. Detailed inventory of the evaporative emissions from parked gasoline vehicles and an evaluation of their atmospheric impact in Japan. Environ Sci Technol. 2020;54(10):5947–53. https://doi.org/10.1021/acs.est.9b06539.

    Article  CAS  Google Scholar 

  71. Knote C, Hodzic A, Jimenez JL. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US. Atmos Chem Phys. 2015;15(1):1–18. https://doi.org/10.5194/acp-15-1-2015.

    Article  CAS  Google Scholar 

  72. Li G, Zavala M, Lei W, Tsimpidi AP, Karydis VA, Pandis SN, et al. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign. Atmos Chem Phys. 2011;11(8):3789–809. https://doi.org/10.5194/acp-11-3789-2011.

    Article  CAS  Google Scholar 

  73. Han Z, Zhang R, Wang QG, Wang W, Cao J, Xu J. Regional modeling of organic aerosols over China in summertime. J Geophys Res Atmos. 2008;113(D11). https://doi.org/10.1029/2007JD009436.

  74. Han Z, Xie Z, Wang G, Zhang R, Tao J. Modeling organic aerosols over east China using a volatility basis-set approach with aging mechanism in a regional air quality model. Atmos Environ. 2016;124:186–98. https://doi.org/10.1016/j.atmosenv.2015.05.045.

    Article  CAS  Google Scholar 

  75. Li J, Han Z, Sun Y, Li J, Liang L. Chemical formation pathways of secondary organic aerosols in the Beijing-Tianjin-Hebei region in wintertime. Atmos Environ. 2021;244: 117996. https://doi.org/10.1016/j.atmosenv.2020.117996.

    Article  CAS  Google Scholar 

  76. Li J, Han Z, Wu J, Tao J, Li J, Sun Y, et al. Secondary organic aerosol formation and source contributions over east China in summertime. Environ Pollut. 2022;306:119383. https://doi.org/10.1016/j.envpol.2022.119383.

    Article  CAS  Google Scholar 

  77. Li J, Han Z, Li J, Liu R, Wu Y, Liang L, et al. The formation and evolution of secondary organic aerosol during haze events in Beijing in wintertime. Sci Total Environ. 2020;703:134937. https://doi.org/10.1016/j.scitotenv.2019.134937.

    Article  CAS  Google Scholar 

  78. Wang S, Wu D, Wang X-M, Fung JC-H, Yu JZ. Relative contributions of secondary organic aerosol formation from toluene, xylenes, isoprene, and monoterpenes in Hong Kong and Guangzhou in the Pearl River Delta, China: an emission-based box modeling study. J Geophys Res Atmos. 2013;118(2):507–19. https://doi.org/10.1029/2012JD017985.

    Article  CAS  Google Scholar 

  79. Ling Z, Xie Q, Shao M, Wang Z, Wang T, Guo H, et al. Formation and sink of glyoxal and methylglyoxal in a polluted subtropical environment: observation-based photochemical analysis and impact evaluation. Atmos Chem Phys. 2020;20(19):11451–67. https://doi.org/10.5194/acp-20-11451-2020.

    Article  CAS  Google Scholar 

  80. Zhang J, Choi M, Ji Y, Zhang R, Zhang R, Ying Q. Assessing the uncertainties in ozone and SOA predictions due to different branching ratios of the cresol pathway in the toluene-OH oxidation mechanism. ACS Earth Space Chem. 2021;5(8):1958–70. https://doi.org/10.1021/acsearthspacechem.1c00092.

    Article  CAS  Google Scholar 

  81. •• Zhao B, Wang S, Donahue NM, Jathar SH, Huang X, Wu W, et al. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. Sci Rep. 2016;6(1):28815. https://doi.org/10.1038/srep28815. This paper improved the representation of SOA from OA aging and IVOCs with the updated parameterizations based on chamber experiments and evaluated their contributions to SOA in China for the first time. The influences of these processes on the oxidation status of OA and contributions from different sources were discussed.

  82. Zhang J, Chen J, Xue C, Chen H, Zhang Q, Liu X, et al. Impacts of six potential HONO sources on HOx budgets and SOA formation during a wintertime heavy haze period in the North China Plain. Sci Total Environ. 2019;681:110–23. https://doi.org/10.1016/j.scitotenv.2019.05.100.

    Article  CAS  Google Scholar 

  83. Xing L, Wu J, Elser M, Tong S, Liu S, Li X, et al. Wintertime secondary organic aerosol formation in Beijing–Tianjin–Hebei (BTH): contributions of HONO sources and heterogeneous reactions. Atmos Chem Phys. 2019;19(4):2343–59. https://doi.org/10.5194/acp-19-2343-2019.

    Article  CAS  Google Scholar 

  84. •• Hu J, Wang P, Ying Q, Zhang H, Chen J, Ge X, et al. Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmos Chem Phys. 2017;17(1):77–92. https://doi.org/10.5194/acp-17-77-2017This paper assessed the contributions of traditional SOA and SOA from the heterogeneous reactions of dicarbonyls and isoprene-derived epoxides in China over a long period. The spatial and seasonal variations and the sensitivities to anthropogenic and biogenic emissions were discussed.

  85. Qiao X, Guo H, Wang P, Tang Y, Ying Q, Zhao X, et al. Fine particulate matter and ozone pollution in the 18 cities of the Sichuan Basin in Southwestern China: model performance and characteristics. Aerosol Air Qual Res. 2019;19(10):2308–19. https://doi.org/10.4209/aaqr.2019.05.0235.

    Article  CAS  Google Scholar 

  86. Yang W, Li J, Wang W, Li J, Ge M, Sun Y, et al. Investigating secondary organic aerosol formation pathways in China during 2014. Atmos Environ. 2019;213:133–47. https://doi.org/10.1016/j.atmosenv.2019.05.057.

    Article  CAS  Google Scholar 

  87. Li J, Zhang H, Ying Q, Wu Z, Zhang Y, Wang X, et al. Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China. Atmos Chem Phys. 2020;20(12):7291–306. https://doi.org/10.5194/acp-20-7291-2020.

    Article  CAS  Google Scholar 

  88. Wu K, Zhu S, Liu Y, Wang H, Yang X, Liu L, et al. Modeling ammonia and its uptake by secondary organic aerosol over China. J Geophys Res Atmos. 2021;126(7):e2020JD034109. https://doi.org/10.1029/2020JD034109.

    Article  CAS  Google Scholar 

  89. Jiang F, Liu Q, Huang X, Wang T, Zhuang B, Xie M. Regional modeling of secondary organic aerosol over China using WRF/Chem. J Aerosol Sci. 2012;43(1):57–73. https://doi.org/10.1016/j.jaerosci.2011.09.003.

    Article  CAS  Google Scholar 

  90. Kelly JM, Doherty RM, O’Connor FM, Mann GW. The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol. Atmos Chem Phys. 2018;18(10):7393–422. https://doi.org/10.5194/acp-18-7393-2018.

    Article  Google Scholar 

  91. Farina SC, Adams PJ, Pandis SN. Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol. J Geophys Res Atmos. 2010;115(D9). https://doi.org/10.1029/2009JD013046.

  92. Hodzic A, Kasibhatla PS, Jo DS, Cappa CD, Jimenez JL, Madronich S, et al. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmos Chem Phys. 2016;16(12):7917–41. https://doi.org/10.5194/acp-16-7917-2016.

    Article  CAS  Google Scholar 

  93. Fu TM, Cao JJ, Zhang XY, Lee SC, Zhang Q, Han YM, et al. Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution. Atmos Chem Phys. 2012;12(5):2725–46. https://doi.org/10.5194/acp-12-2725-2012.

    Article  CAS  Google Scholar 

  94. Li J, Zhang M, Wu F, Sun Y, Tang G. Assessment of the impacts of aromatic VOC emissions and yields of SOA on SOA concentrations with the air quality model RAMS-CMAQ. Atmos Environ. 2017;158:105–15. https://doi.org/10.1016/j.atmosenv.2017.03.035.

    Article  CAS  Google Scholar 

  95. Gao Y, Ma M, Yan F, Su H, Wang S, Liao H, et al. Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Sci Total Environ. 2022;814:152654. https://doi.org/10.1016/j.scitotenv.2021.152654.

    Article  CAS  Google Scholar 

  96. •• Chang X, Zhao B, Zheng H, Wang S, Cai S, Guo F, et al. Full-volatility emission framework corrects missing and underestimated secondary organic aerosol sources. One Earth. 2022;5(4):403–412. https://doi.org/10.1016/j.oneear.2022.03.015. This paper developed a full-volatility emission dataset of different anthropogenic sources and evaluated the contributions of SOA from precursors with different volatilities and major sources in China.

  97. Chen X, Zhang Y, Zhao J, Liu Y, Shen C, Wu L, et al. Regional modeling of secondary organic aerosol formation over eastern China: the impact of uptake coefficients of dicarbonyls and semivolatile process of primary organic aerosol. Sci Total Environ. 2021;793:148176. https://doi.org/10.1016/j.scitotenv.2021.148176.

    Article  CAS  Google Scholar 

  98. Qin M, Wang X, Hu Y, Ding X, Song Y, Li M, et al. Simulating biogenic secondary organic aerosol during summertime in China. J Geophys Res Atmos. 2018;123(19):11100–19. https://doi.org/10.1029/2018JD029185.

    Article  Google Scholar 

  99. Li J, Zhang M, Tang G, Sun Y, Wu F, Xu Y. Assessment of dicarbonyl contributions to secondary organic aerosols over China using RAMS-CMAQ. Atmos Chem Phys. 2019;19(9):6481–95. https://doi.org/10.5194/acp-19-6481-2019.

    Article  CAS  Google Scholar 

  100. Choi MS, Qiu X, Zhang J, Wang S, Li X, Sun Y, et al. Study of secondary organic aerosol formation from chlorine radical-initiated oxidation of volatile organic compounds in a polluted atmosphere using a 3D chemical transport model. Environ Sci Technol. 2020;54(21):13409–18. https://doi.org/10.1021/acs.est.0c02958.

    Article  CAS  Google Scholar 

  101. Zhang J, An J, Qu Y, Liu X, Chen Y. Impacts of potential HONO sources on the concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of China. Sci Total Environ. 2019;647:836–52. https://doi.org/10.1016/j.scitotenv.2018.08.030.

    Article  CAS  Google Scholar 

  102. Guo Y, Zhang J, An J, Qu Y, Liu X, Sun Y, et al. Effect of vertical parameterization of a missing daytime source of HONO on concentrations of HONO, O3 and secondary organic aerosols in eastern China. Atmos Environ. 2020;226:117208. https://doi.org/10.1016/j.atmosenv.2019.117208.

    Article  CAS  Google Scholar 

  103. Zhang J, He X, Gao Y, Zhu S, Jing S, Wang H, et al. Assessing regional model predictions of wintertime SOA from aromatic compounds and monoterpenes with precursor-specific tracers. Aerosol Air Qual Res. 2021;21(12):210233. https://doi.org/10.4209/aaqr.210233.

    Article  CAS  Google Scholar 

  104. Huang L, Wang Q, Wang Y, Emery C, Zhu A, Zhu Y, et al. Simulation of secondary organic aerosol over the Yangtze River Delta region: the impacts from the emissions of intermediate volatility organic compounds and the SOA modeling framework. Atmos Environ. 2021;246:118079. https://doi.org/10.1016/j.atmosenv.2020.118079.

    Article  CAS  Google Scholar 

  105. Lin J, An J, Qu Y, Chen Y, Li Y, Tang Y, et al. Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer. Atmos Environ. 2016;124:176–85. https://doi.org/10.1016/j.atmosenv.2015.08.098.

    Article  CAS  Google Scholar 

  106. Yin C, Wang T, Solmon F, Mallet M, Jiang F, Li S, et al. Assessment of direct radiative forcing due to secondary organic aerosol over China with a regional climate model. Tellus B Chem Phys Meteorol. 2015;67(1):24634. https://doi.org/10.3402/tellusb.v67.24634.

    Article  CAS  Google Scholar 

  107. Yao T, Li Y, Gao J, Fung JCH, Wang S, Li Y, et al. Source apportionment of secondary organic aerosols in the Pearl River Delta region: contribution from the oxidation of semi-volatile and intermediate volatility primary organic aerosols. Atmos Environ. 2020;222:117111. https://doi.org/10.1016/j.atmosenv.2019.117111.

    Article  CAS  Google Scholar 

  108. Pankow JF. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ. 1994;28(2):189–93. https://doi.org/10.1016/1352-2310(94)90094-9.

    Article  CAS  Google Scholar 

  109. Odum JR, Hoffmann T, Bowman F, Collins D, Flagan RC, Seinfeld JH. Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Technol. 1996;30(8):2580–5. https://doi.org/10.1021/es950943+.

    Article  CAS  Google Scholar 

  110. Cheng YL, Bai YH, Li JL, Liu ZR. Modeling of air quality with a modified two-dimensional Eulerian model: a case study in the Pearl River Delta (PRD) region of China. J Environ Sci. 2007;19(5):572–7. https://doi.org/10.1016/s1001-0742(07)60095-3.

    Article  CAS  Google Scholar 

  111. Wang X, Wu Z, Liang G. WRF/CHEM modeling of impacts of weather conditions modified by urban expansion on secondary organic aerosol formation over Pearl River Delta. Particuology. 2009;7(5):384–91. https://doi.org/10.1016/j.partic.2009.04.007.

    Article  CAS  Google Scholar 

  112. Heald CL, Jacob DJ, Park RJ, Russell LM, Huebert BJ, Seinfeld JH, et al. A large organic aerosol source in the free troposphere missing from current models. Geophys Res Lett. 2005;32(18). https://doi.org/10.1029/2005GL023831.

  113. Xu Y, Chen Y, Gao J, Zhu S, Ying Q, Hu J, et al. Contribution of biogenic sources to secondary organic aerosol in the summertime in Shaanxi, China. Chemosphere. 2020;254:126815. https://doi.org/10.1016/j.chemosphere.2020.126815.

    Article  CAS  Google Scholar 

  114. Qiu X, Wang S, Ying Q, Duan L, Xing J, Cao J, et al. Importance of wintertime anthropogenic glyoxal and methylglyoxal emissions in Beijing and implications for secondary organic aerosol formation in megacities. Environ Sci Technol. 2020;54(19):11809–17. https://doi.org/10.1021/acs.est.0c02822.

    Article  CAS  Google Scholar 

  115. Shi Z, Li J, Huang L, Wang P, Wu L, Ying Q, et al. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model. Sci Total Environ. 2017;601–602:1476–87. https://doi.org/10.1016/j.scitotenv.2017.06.019.

    Article  CAS  Google Scholar 

  116. • Wang P, Ying Q, Zhang H, Hu J, Lin Y, Mao H. Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories. Environ Pollut. 2018;237:756–66. https://doi.org/10.1016/j.envpol.2017.10.122. This paper evaluated the contributions of different sources to SOA and the spatial and seasonal variations in China over a long period. The sensitivities to emission inventories were also examined.

  117. Liu J, Shen J, Cheng Z, Wang P, Ying Q, Zhao Q, et al. Source apportionment and regional transport of anthropogenic secondary organic aerosol during winter pollution periods in the Yangtze River Delta, China. Sci Total Environ. 2020;710:135620. https://doi.org/10.1016/j.scitotenv.2019.135620.

    Article  CAS  Google Scholar 

  118. Zhang J, He X, Gao Y, Zhu S, Jing S, Wang H, et al. Estimation of aromatic secondary organic aerosol using a molecular tracer–a chemical transport model assessment. Environ Sci Technol. 2021;55(19):12882–92. https://doi.org/10.1021/acs.est.1c03670.

    Article  CAS  Google Scholar 

  119. Donahue NM, Robinson AL, Stanier CO, Pandis SN. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ Sci Technol. 2006;40(8):2635–43. https://doi.org/10.1021/es052297c.

    Article  CAS  Google Scholar 

  120. Feng T, Li G, Cao J, Bei N, Shen Z, Zhou W, et al. Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China. Atmos Chem Phys. 2016;16(15):10045–61. https://doi.org/10.5194/acp-16-10045-2016.

    Article  CAS  Google Scholar 

  121. Murphy BN, Pandis SN. Simulating the formation of semivolatile primary and secondary organic aerosol in a regional chemical transport model. Environ Sci Technol. 2009;43(13):4722–8. https://doi.org/10.1021/es803168a.

    Article  CAS  Google Scholar 

  122. Zhang Y, Liao H, Ding X, Jo D, Li K. Implications of RCP emissions on future concentration and direct radiative forcing of secondary organic aerosol over China. Sci Total Environ. 2018;640–641:1187–204. https://doi.org/10.1016/j.scitotenv.2018.05.274.

    Article  CAS  Google Scholar 

  123. Koo B, Knipping E, Yarwood G. 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmos Environ. 2014;95:158–64. https://doi.org/10.1016/j.atmosenv.2014.06.031.

    Article  CAS  Google Scholar 

  124. Grieshop AP, Miracolo MA, Donahue NM, Robinson AL. Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements. Environ Sci Technol. 2009;43(13):4750–6. https://doi.org/10.1021/es8032378.

    Article  CAS  Google Scholar 

  125. Presto AA, Hennigan CJ, Nguyen NT, Robinson AL. Determination of volatility distributions of primary organic aerosol emissions from internal combustion engines using thermal desorption gas chromatography mass spectrometry. Aerosol Sci Technol. 2012;46(10):1129–39. https://doi.org/10.1080/02786826.2012.700430.

    Article  CAS  Google Scholar 

  126. Huffman JA, Docherty KS, Mohr C, Cubison MJ, Ulbrich IM, Ziemann PJ, et al. Chemically-resolved volatility measurements of organic aerosol from different sources. Environ Sci Technol. 2009;43(14):5351–7. https://doi.org/10.1021/es803539d.

    Article  CAS  Google Scholar 

  127. Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, et al. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science. 2007;315(5816):1259–62. https://doi.org/10.1126/science.1133061.

    Article  CAS  Google Scholar 

  128. Tkacik DS, Presto AA, Donahue NM, Robinson AL. Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes. Environ Sci Technol. 2012;46(16):8773–81. https://doi.org/10.1021/es301112c.

    Article  CAS  Google Scholar 

  129. Zhao Y, Hennigan CJ, May AA, Tkacik DS, de Gouw JA, Gilman JB, et al. Intermediate-volatility organic compounds: a large source of secondary organic aerosol. Environ Sci Technol. 2014;48(23):13743–50. https://doi.org/10.1021/es5035188.

    Article  CAS  Google Scholar 

  130. Ots R, Young DE, Vieno M, Xu L, Dunmore RE, Allan JD, et al. Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo) campaign. Atmos Chem Phys. 2016;16(10):6453–73. https://doi.org/10.5194/acp-16-6453-2016.

    Article  CAS  Google Scholar 

  131. Shrivastava MK, Lane TE, Donahue NM, Pandis SN, Robinson AL. Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. J Geophys Res Atmos. 2008;113(D18). https://doi.org/10.1029/2007JD009735.

  132. Hayes PL, Carlton AG, Baker KR, Ahmadov R, Washenfelder RA, Alvarez S, et al. Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmos Chem Phys. 2015;15(10):5773–801. https://doi.org/10.5194/acp-15-5773-2015.

    Article  CAS  Google Scholar 

  133. Pye HOT, Seinfeld JH. A global perspective on aerosol from low-volatility organic compounds. Atmos Chem Phys. 2010;10(9):4377–401. https://doi.org/10.5194/acp-10-4377-2010.

    Article  CAS  Google Scholar 

  134. Hu W, Zhou H, Chen W, Ye Y, Pan T, Wang Y, et al. Oxidation flow reactor results in a Chinese megacity emphasize the important contribution of S/IVOCs to ambient SOA formation. Environ Sci Technol. 2022;56(11):6880–93. https://doi.org/10.1021/acs.est.1c03155.

    Article  CAS  Google Scholar 

  135. Li Y, Ren B, Qiao Z, Zhu J, Wang H, Zhou M, et al. Characteristics of atmospheric intermediate volatility organic compounds (IVOCs) in winter and summer under different air pollution levels. Atmos Environ. 2019;210:58–65. https://doi.org/10.1016/j.atmosenv.2019.04.041.

    Article  CAS  Google Scholar 

  136. Qi L, Liu H, Shen XE, Fu M, Huang F, Man H, et al. Intermediate-volatility organic compound emissions from nonroad construction machinery under different operation modes. Environ Sci Technol. 2019;53(23):13832–40. https://doi.org/10.1021/acs.est.9b01316.

    Article  CAS  Google Scholar 

  137. Qi L, Zhao J, Li Q, Su S, Lai Y, Deng F, et al. Primary organic gas emissions from gasoline vehicles in China: factors, composition and trends. Environ Pollut. 2021;290:117984. https://doi.org/10.1016/j.envpol.2021.117984.

    Article  CAS  Google Scholar 

  138. Cai S, Zhu L, Wang S, Wisthaler A, Li Q, Jiang J, et al. Time-resolved intermediate-volatility and semivolatile organic compound emissions from household coal combustion in Northern China. Environ Sci Technol. 2019;53(15):9269–78. https://doi.org/10.1021/acs.est.9b00734.

    Article  CAS  Google Scholar 

  139. Qian Z, Chen Y, Liu Z, Han Y, Zhang Y, Feng Y, et al. Intermediate volatile organic compound emissions from residential solid fuel combustion based on field measurements in rural China. Environ Sci Technol. 2021;55(9):5689–700. https://doi.org/10.1021/acs.est.0c07908.

    Article  CAS  Google Scholar 

  140. Yu Y, Guo S, Wang H, Shen R, Zhu W, Tan R, et al. Importance of semivolatile/intermediate-volatility organic compounds to secondary organic aerosol formation from Chinese domestic cooking emissions. Environ Sci Technol Lett. 2022;9(6):507–12. https://doi.org/10.1021/acs.estlett.2c00207.

    Article  CAS  Google Scholar 

  141. Wu L, Wang X, Lu S, Shao M, Ling Z. Emission inventory of semi-volatile and intermediate-volatility organic compounds and their effects on secondary organic aerosol over the Pearl River Delta region. Atmos Chem Phys. 2019;19(12):8141–61. https://doi.org/10.5194/acp-19-8141-2019.

    Article  CAS  Google Scholar 

  142. Donahue NM, Epstein SA, Pandis SN, Robinson AL. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmos Chem Phys. 2011;11(7):3303–18. https://doi.org/10.5194/acp-11-3303-2011.

    Article  CAS  Google Scholar 

  143. Jacob DJ. Heterogeneous chemistry and tropospheric ozone. Atmos Environ. 2000;34(12):2131–59. https://doi.org/10.1016/S1352-2310(99)00462-8.

    Article  CAS  Google Scholar 

  144. Fu T-M, Jacob DJ, Wittrock F, Burrows JP, Vrekoussis M, Henze DK. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J Geophys Res Atmos. 2008;113(D15). https://doi.org/10.1029/2007JD009505.

  145. Li N, Fu T-M, Cao J, Lee S, Huang X-F, He L-Y, et al. Sources of secondary organic aerosols in the Pearl River Delta region in fall: contributions from the aqueous reactive uptake of dicarbonyls. Atmos Environ. 2013;76:200–7. https://doi.org/10.1016/j.atmosenv.2012.12.005.

    Article  CAS  Google Scholar 

  146. Liu S, Xing J, Zhang H, Ding D, Zhang F, Zhao B, et al. Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China in the 2050s. Atmos Environ. 2019;218:117020. https://doi.org/10.1016/j.atmosenv.2019.117020.

    Article  CAS  Google Scholar 

  147. Wu J, Bei N, Li X, Cao J, Feng T, Wang Y, et al. Widespread air pollutants of the North China Plain during the Asian summer monsoon season: a case study. Atmos Chem Phys. 2018;18(12):8491–504. https://doi.org/10.5194/acp-18-8491-2018.

    Article  CAS  Google Scholar 

  148. Zhang J, He X, Ding X, Yu JZ, Ying Q. Modeling secondary organic aerosol tracers and tracer-to-SOA ratios for monoterpenes and sesquiterpenes using a chemical transport model. Environ Sci Technol. 2022;56(2):804–13. https://doi.org/10.1021/acs.est.1c06373.

    Article  CAS  Google Scholar 

  149. Wu K, Yang X, Chen D, Gu S, Lu Y, Jiang Q, et al. Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmos Res. 2020;231:104656. https://doi.org/10.1016/j.atmosres.2019.104656.

    Article  CAS  Google Scholar 

  150. Hu J, Chen J, Ying Q, Zhang H. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos Chem Phys. 2016;16(16):10333–50. https://doi.org/10.5194/acp-16-10333-2016.

    Article  CAS  Google Scholar 

  151. Dong X, Liu Y, Li X, Yue M, Liu Y, Ma Z, et al. Modeling analysis of biogenic secondary organic aerosol dependence on anthropogenic emissions in China. Environ Sci Technol Lett. 2022;9(4):286–92. https://doi.org/10.1021/acs.estlett.2c00104.

    Article  CAS  Google Scholar 

  152. Feng T, Zhao S, Bei N, Wu J, Liu S, Li X, et al. Secondary organic aerosol enhanced by increasing atmospheric oxidizing capacity in Beijing–Tianjin–Hebei (BTH), China. Atmos Chem Phys. 2019;19(11):7429–43. https://doi.org/10.5194/acp-19-7429-2019.

    Article  CAS  Google Scholar 

  153. Wang P, Liu Y, Dai J, Fu X, Wang X, Guenther A, et al. Isoprene emissions response to drought and the impacts on ozone and SOA in China. J Geophys Res Atmos. 2021;126(10):e2020JD033263. https://doi.org/10.1029/2020JD033263.

    Article  CAS  Google Scholar 

  154. Guo H, Chen K, Wang P, Hu J, Ying Q, Gao A, et al. Simulation of summer ozone and its sensitivity to emission changes in China. Atmos Pollut Res. 2019;10(5):1543–52. https://doi.org/10.1016/j.apr.2019.05.003.

    Article  CAS  Google Scholar 

  155. Kim D, Cho C, Jeong S, Lee S, Nault BA, Campuzano-Jost P, et al. Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol. Atmos Chem Phys. 2022;22(2):805–21. https://doi.org/10.5194/acp-22-805-2022.

    Article  CAS  Google Scholar 

  156. Li J, Mao J, Min K-E, Washenfelder RA, Brown SS, Kaiser J, et al. Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. J Geophys Res Atmos. 2016;121(16):9849–61. https://doi.org/10.1002/2016JD025331.

    Article  CAS  Google Scholar 

  157. Volkamer R, San Martini F, Molina LT, Salcedo D, Jimenez JL, Molina MJ. A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys Res Lett. 2007;34(19). https://doi.org/10.1029/2007GL030752.

  158. Washenfelder RA, Young CJ, Brown SS, Angevine WM, Atlas EL, Blake DR, et al. The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. J Geophys Res Atmos. 2011;116(D21). https://doi.org/10.1029/2011JD016314.

  159. Ervens B, Volkamer R. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos Chem Phys. 2010;10(17):8219–44. https://doi.org/10.5194/acp-10-8219-2010.

    Article  CAS  Google Scholar 

  160. Waxman EM, Elm J, Kurtén T, Mikkelsen KV, Ziemann PJ, Volkamer R. Glyoxal and methylglyoxal setschenow salting constants in sulfate, nitrate, and chloride solutions: measurements and Gibbs energies. Environ Sci Technol. 2015;49(19):11500–8. https://doi.org/10.1021/acs.est.5b02782.

    Article  CAS  Google Scholar 

  161. Kampf CJ, Waxman EM, Slowik JG, Dommen J, Pfaffenberger L, Praplan AP, et al. Effective Henry’s law partitioning and the salting constant of glyoxal in aerosols containing sulfate. Environ Sci Technol. 2013;47(9):4236–44. https://doi.org/10.1021/es400083d.

    Article  CAS  Google Scholar 

  162. Curry LA, Tsui WG, McNeill VF. Technical note: Updated parameterization of the reactive uptake of glyoxal and methylglyoxal by atmospheric aerosols and cloud droplets. Atmos Chem Phys. 2018;18(13):9823–30. https://doi.org/10.5194/acp-18-9823-2018.

    Article  CAS  Google Scholar 

  163. Zhang Y, Tang L, Sun Y, Favez O, Canonaco F, Albinet A, et al. Limited formation of isoprene epoxydiols-derived secondary organic aerosol under NOx-rich environments in Eastern China. Geophys Res Lett. 2017;44(4):2035–43. https://doi.org/10.1002/2016GL072368.

    Article  CAS  Google Scholar 

  164. Budisulistiorini SH, Li X, Bairai ST, Renfro J, Liu Y, Liu YJ, et al. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmos Chem Phys. 2015;15(15):8871–88. https://doi.org/10.5194/acp-15-8871-2015.

    Article  CAS  Google Scholar 

  165. Xu L, Guo H, Boyd CM, Klein M, Bougiatioti A, Cerully KM, et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. U.S.A. 2015;112(1):37–42. https://doi.org/10.1073/pnas.1417609112.

  166. Rattanavaraha W, Chu K, Budisulistiorini SH, Riva M, Lin YH, Edgerton ES, et al. Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study. Atmos Chem Phys. 2016;16(8):4897–914. https://doi.org/10.5194/acp-16-4897-2016.

    Article  CAS  Google Scholar 

  167. Li J, Wang G, Wu C, Cao C, Ren Y, Wang J, et al. Characterization of isoprene-derived secondary organic aerosols at a rural site in North China Plain with implications for anthropogenic pollution effects. Sci Rep. 2018;8(1):535. https://doi.org/10.1038/s41598-017-18983-7.

    Article  CAS  Google Scholar 

  168. Nguyen TB, Bates KH, Crounse JD, Schwantes RH, Zhang X, Kjaergaard HG, et al. Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere. Phys Chem Chem Phys. 2015;17(27):17914–26. https://doi.org/10.1039/C5CP02001H.

    Article  CAS  Google Scholar 

  169. Anttila T, Kiendler-Scharr A, Tillmann R, Mentel TF. On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: theoretical analysis and application to the heterogeneous hydrolysis of N2O5. J Phys Chem A. 2006;110(35):10435–43. https://doi.org/10.1021/jp062403c.

    Article  CAS  Google Scholar 

  170. Gaston CJ, Riedel TP, Zhang Z, Gold A, Surratt JD, Thornton JA. Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ Sci Technol. 2014;48(19):11178–86. https://doi.org/10.1021/es5034266.

    Article  CAS  Google Scholar 

  171. Riva M, Bell DM, Hansen A-MK, Drozd GT, Zhang Z, Gold A, et al. Effect of organic coatings, humidity and aerosol acidity on multiphase chemistry of isoprene epoxydiols. Environ Sci Technol. 2016;50(11):5580–8. https://doi.org/10.1021/acs.est.5b06050.

    Article  CAS  Google Scholar 

  172. Zhang Y, Chen Y, Lei Z, Olson NE, Riva M, Koss AR, et al. Joint impacts of acidity and viscosity on the formation of secondary organic aerosol from isoprene epoxydiols (IEPOX) in phase separated particles. ACS Earth Space Chem. 2019;3(12):2646–58. https://doi.org/10.1021/acsearthspacechem.9b00209.

    Article  CAS  Google Scholar 

  173. Zhang Y, Chen Y, Lambe AT, Olson NE, Lei Z, Craig RL, et al. Effect of the aerosol-phase state on secondary organic aerosol formation from the reactive uptake of isoprene-derived epoxydiols (IEPOX). Environ Sci Technol Lett. 2018;5(3):167–74. https://doi.org/10.1021/acs.estlett.8b00044.

    Article  CAS  Google Scholar 

  174. Schmedding R, Ma M, Zhang Y, Farrell S, Pye HOT, Chen Y, et al. α-Pinene-derived organic coatings on acidic sulfate aerosol impacts secondary organic aerosol formation from isoprene in a box model. Atmos Environ. 2019;213:456–62. https://doi.org/10.1016/j.atmosenv.2019.06.005.

    Article  CAS  Google Scholar 

  175. Zheng Y, Thornton JA, Ng NL, Cao H, Henze DK, McDuffie EE, et al. Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US. Atmos Chem Phys. 2020;20(21):13091–107. https://doi.org/10.5194/acp-20-13091-2020.

    Article  CAS  Google Scholar 

  176. Bräuer P, Mouchel-Vallon C, Tilgner A, Mutzel A, Böge O, Rodigast M, et al. Development of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds. Atmos Chem Phys. 2019;19(14):9209–39. https://doi.org/10.5194/acp-19-9209-2019.

    Article  CAS  Google Scholar 

  177. Zhu Y, Tilgner A, Hoffmann EH, Herrmann H, Kawamura K, Yang L, et al. Multiphase MCM–CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014. Atmos Chem Phys. 2020;20(11):6725–47. https://doi.org/10.5194/acp-20-6725-2020.

    Article  CAS  Google Scholar 

  178. Pye HOT, Pinder RW, Piletic IR, Xie Y, Capps SL, Lin Y-H, et al. Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation. Environ Sci Technol. 2013;47(19):11056–64. https://doi.org/10.1021/es402106h.

    Article  CAS  Google Scholar 

  179. Zhang Y-Q, Ding X, He Q-F, Wen T-X, Wang J-Q, Yang K, et al. Observational insights into isoprene secondary organic aerosol formation through the epoxide pathway at three urban sites from Northern to Southern China. Environ Sci Technol. 2022;56(8):4795–805. https://doi.org/10.1021/acs.est.1c06974.

    Article  CAS  Google Scholar 

  180. Schwantes RH, Charan SM, Bates KH, Huang Y, Nguyen TB, Mai H, et al. Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions. Atmos Chem Phys. 2019;19(11):7255–78. https://doi.org/10.5194/acp-19-7255-2019.

    Article  CAS  Google Scholar 

  181. Perring AE, Pusede SE, Cohen RC. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chem Rev. 2013;113(8):5848–70. https://doi.org/10.1021/cr300520x.

    Article  CAS  Google Scholar 

  182. Ng NL, Brown SS, Archibald AT, Atlas E, Cohen RC, Crowley JN, et al. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmos Chem Phys. 2017;17(3):2103–62. https://doi.org/10.5194/acp-17-2103-2017.

    Article  CAS  Google Scholar 

  183. Zare A, Romer PS, Nguyen T, Keutsch FN, Skog K, Cohen RC. A comprehensive organic nitrate chemistry: insights into the lifetime of atmospheric organic nitrates. Atmos Chem Phys. 2018;18(20):15419–36. https://doi.org/10.5194/acp-18-15419-2018.

    Article  CAS  Google Scholar 

  184. Boyd CM, Sanchez J, Xu L, Eugene AJ, Nah T, Tuet WY, et al. Secondary organic aerosol formation from the β-pinene+NO3 system: effect of humidity and peroxy radical fate. Atmos Chem Phys. 2015;15(13):7497–522. https://doi.org/10.5194/acp-15-7497-2015.

    Article  CAS  Google Scholar 

  185. Fisher JA, Jacob DJ, Travis KR, Kim PS, Marais EA, Chan Miller C, et al. Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US. Atmos Chem Phys. 2016;16(9):5969–91. https://doi.org/10.5194/acp-16-5969-2016.

    Article  CAS  Google Scholar 

  186. Mao J, Paulot F, Jacob DJ, Cohen RC, Crounse JD, Wennberg PO, et al. Ozone and organic nitrates over the eastern United States: sensitivity to isoprene chemistry. J Geophys Res Atmos. 2013;118(19):11256–68. https://doi.org/10.1002/jgrd.50817.

    Article  CAS  Google Scholar 

  187. Xie Y, Paulot F, Carter WPL, Nolte CG, Luecken DJ, Hutzell WT, et al. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmos Chem Phys. 2013;13(16):8439–55. https://doi.org/10.5194/acp-13-8439-2013.

    Article  CAS  Google Scholar 

  188. Pye HOT, Luecken DJ, Xu L, Boyd CM, Ng NL, Baker KR, et al. Modeling the current and future roles of particulate organic nitrates in the Southeastern United States. Environ Sci Technol. 2015;49(24):14195–203. https://doi.org/10.1021/acs.est.5b03738.

    Article  CAS  Google Scholar 

  189. Li J, Mao J, Fiore AM, Cohen RC, Crounse JD, Teng AP, et al. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmos Chem Phys. 2018;18(3):2341–61. https://doi.org/10.5194/acp-18-2341-2018.

    Article  CAS  Google Scholar 

  190. Zare A, Fahey KM, Sarwar G, Cohen RC, Pye HOT. Vapor-pressure pathways initiate but hydrolysis products dominate the aerosol estimated from organic nitrates. ACS Earth Space Chem. 2019;3(8):1426–37. https://doi.org/10.1021/acsearthspacechem.9b00067.

    Article  CAS  Google Scholar 

  191. Coggon MM, Gkatzelis GI, McDonald BC, Gilman JB, Schwantes RH, Abuhassan N, et al. Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proc Natl Acad Sci. 2021;118(32):e2026653118. https://doi.org/10.1073/pnas.2026653118.

    Article  CAS  Google Scholar 

  192. Akagi SK, Yokelson RJ, Burling IR, Meinardi S, Simpson I, Blake DR, et al. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes. Atmos Chem Phys. 2013;13(3):1141–65. https://doi.org/10.5194/acp-13-1141-2013.

    Article  CAS  Google Scholar 

  193. Li XB, Yuan B, Wang S, Wang C, Lan J, Liu Z, et al. Variations and sources of volatile organic compounds (VOCs) in urban region: insights from measurements on a tall tower. Atmos Chem Phys. 2022;22(16):10567–87. https://doi.org/10.5194/acp-22-10567-2022.

    Article  CAS  Google Scholar 

  194. Smith DF, McIver CD, Kleindienst TE. Primary product distribution from the reaction of hydroxyl radicals with toluene at ppb NOX mixing ratios. J Atmos Chem. 1998;30(2):209–28. https://doi.org/10.1023/A:1005980301720.

    Article  CAS  Google Scholar 

  195. Ji Y, Zhao J, Terazono H, Misawa K, Levitt NP, Li Y, et al. Reassessing the atmospheric oxidation mechanism of toluene. Proc Natl Acad Sci. 2017;114(31):8169–74. https://doi.org/10.1073/pnas.1705463114.

    Article  CAS  Google Scholar 

  196. Qi X, Zhu S, Zhu C, Hu J, Lou S, Xu L, et al. Smog chamber study of the effects of NOx and NH3 on the formation of secondary organic aerosols and optical properties from photo-oxidation of toluene. Sci Total Environ. 2020;727:138632. https://doi.org/10.1016/j.scitotenv.2020.138632.

    Article  CAS  Google Scholar 

  197. Cai X, Griffin RJ. Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms. J Geophys Res Atmos. 2006;111(D14). https://doi.org/10.1029/2005JD006857.

  198. Dhulipala SV, Bhandari S, Hildebrandt Ruiz L. Formation of oxidized organic compounds from Cl-initiated oxidation of toluene. Atmos Environ. 2019;199:265–73. https://doi.org/10.1016/j.atmosenv.2018.11.002.

    Article  CAS  Google Scholar 

  199. Wang DS, Ruiz LH. Secondary organic aerosol from chlorine-initiated oxidation of isoprene. Atmos Chem Phys. 2017;17(22):13491–508. https://doi.org/10.5194/acp-17-13491-2017.

    Article  CAS  Google Scholar 

  200. Fu X, Wang T, Wang S, Zhang L, Cai S, Xing J, et al. Anthropogenic emissions of hydrogen chloride and fine particulate chloride in China. Environ Sci Technol. 2018;52(3):1644–54. https://doi.org/10.1021/acs.est.7b05030.

    Article  CAS  Google Scholar 

  201. Pye HOT, Murphy BN, Xu L, Ng NL, Carlton AG, Guo H, et al. On the implications of aerosol liquid water and phase separation for organic aerosol mass. Atmos Chem Phys. 2017;17(1):343–69. https://doi.org/10.5194/acp-17-343-2017.

    Article  CAS  Google Scholar 

  202. Sun J, Liu L, Xu L, Wang Y, Wu Z, Hu M, et al. Key role of nitrate in phase transitions of urban particles: implications of important reactive surfaces for secondary aerosol formation. J Geophys Res Atmos. 2018;123(2):1234–43. https://doi.org/10.1002/2017JD027264.

    Article  CAS  Google Scholar 

  203. Zuend A, Marcolli C, Luo BP, Peter T. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients. Atmos Chem Phys. 2008;8(16):4559–93. https://doi.org/10.5194/acp-8-4559-2008.

    Article  CAS  Google Scholar 

  204. Miao R, Chen Q, Zheng Y, Cheng X, Sun Y, Palmer PI, et al. Model bias in simulating major chemical components of PM2.5 in China. Atmos Chem Phys. 2020;20(20):12265–84. https://doi.org/10.5194/acp-20-12265-2020.

    Article  CAS  Google Scholar 

  205. Liu Z, Wang Y, Vrekoussis M, Richter A, Wittrock F, Burrows JP, et al. Exploring the missing source of glyoxal (CHOCHO) over China. Geophys Res Lett. 2012;39(10). https://doi.org/10.1029/2012GL051645.

  206. Lu Q, Murphy BN, Qin M, Adams PJ, Zhao Y, Pye HOT, et al. Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and secondary organic aerosol parameterization for intermediate-volatility organic compounds. Atmos Chem Phys. 2020;20(7):4313–32. https://doi.org/10.5194/acp-20-4313-2020.

    Article  CAS  Google Scholar 

  207. Li Y, An J, Kajino M, Gultepe I, Chen Y, Song T, et al. Impacts of additional HONO sources on O3 and PM2.5 chemical coupling and control strategies in the Beijing–Tianjin–Hebei region of China. Tellus B Chem Phys Meteorol. 2015;67(1):23930. https://doi.org/10.3402/tellusb.v67.23930.

    Article  CAS  Google Scholar 

  208. Zhang L, Wang T, Zhang Q, Zheng J, Xu Z, Lv M. Potential sources of nitrous acid (HONO) and their impacts on ozone: a WRF-Chem study in a polluted subtropical region. J Geophys Res Atmos. 2016;121(7):3645–62. https://doi.org/10.1002/2015JD024468.

    Article  CAS  Google Scholar 

  209. Li J-L, Zhang M-G, Gao Y, Chen L. Model analysis of secondary organic aerosol over China with a regional air quality modeling system (RAMS-CMAQ). Atmos Ocean Sci Lett. 2016;9(6):443–50. https://doi.org/10.1080/16742834.2016.1233798.

    Article  Google Scholar 

  210. Cao J, Situ S, Hao Y, Xie S, Li L. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmos Chem Phys. 2022;22(4):2351–64. https://doi.org/10.5194/acp-22-2351-2022.

    Article  CAS  Google Scholar 

  211. Belis CA, Pernigotti D, Pirovano G, Favez O, Jaffrezo JL, Kuenen J, et al. Evaluation of receptor and chemical transport models for PM10 source apportionment. Atmos Environ X. 2020;5:100053. https://doi.org/10.1016/j.aeaoa.2019.100053.

    Article  CAS  Google Scholar 

  212. Marais EA, Jacob DJ, Turner JR, Mickley LJ. Evidence of 1991–2013 decrease of biogenic secondary organic aerosol in response to SO2 emission controls. Environ Res Lett. 2017;12(5):054018. https://doi.org/10.1088/1748-9326/aa69c8.

    Article  CAS  Google Scholar 

  213. Fu Y, Liao H. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: impacts on tropospheric ozone and secondary organic aerosol. Atmos Environ. 2012;59:170–85. https://doi.org/10.1016/j.atmosenv.2012.05.053.

    Article  CAS  Google Scholar 

  214. Fu Y, Liao H. Impacts of land use and land cover changes on biogenic emissions of volatile organic compounds in China from the late 1980s to the mid-2000s: implications for tropospheric ozone and secondary organic aerosol. Tellus B Chem Phys Meteorol. 2014;66(1):24987. https://doi.org/10.3402/tellusb.v66.24987.

    Article  CAS  Google Scholar 

  215. Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, et al. Ion-induced nucleation of pure biogenic particles. Nature. 2016;533(7604):521–6. https://doi.org/10.1038/nature17953.

    Article  CAS  Google Scholar 

  216. Metzger A, Verheggen B, Dommen J, Duplissy J, Prevot ASH, Weingartner E, et al. Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc Natl Acad Sci. 2010;107(15):6646–51. https://doi.org/10.1073/pnas.0911330107.

    Article  Google Scholar 

  217. Patoulias D, Fountoukis C, Riipinen I, Pandis SN. The role of organic condensation on ultrafine particle growth during nucleation events. Atmos Chem Phys. 2015;15(11):6337–50. https://doi.org/10.5194/acp-15-6337-2015.

    Article  CAS  Google Scholar 

  218. Liu XH, Zhu YJ, Zheng M, Gao HW, Yao XH. Production and growth of new particles during two cruise campaigns in the marginal seas of China. Atmos Chem Phys. 2014;14(15):7941–51. https://doi.org/10.5194/acp-14-7941-2014.

    Article  CAS  Google Scholar 

  219. Chen X, Yang W, Wang Z, Li J, Hu M, An J, et al. Improving new particle formation simulation by coupling a volatility-basis set (VBS) organic aerosol module in NAQPMS+APM. Atmos Environ. 2019;204:1–11. https://doi.org/10.1016/j.atmosenv.2019.01.053.

    Article  CAS  Google Scholar 

  220. Chen X, Yu F, Yang W, Sun Y, Chen H, Du W, et al. Global–regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module. Atmos Chem Phys. 2021;21(12):9343–66. https://doi.org/10.5194/acp-21-9343-2021.

    Article  CAS  Google Scholar 

  221. Shrivastava M, Easter RC, Liu X, Zelenyuk A, Singh B, Zhang K, et al. Global transformation and fate of SOA: implications of low-volatility SOA and gas-phase fragmentation reactions. J Geophys Res Atmos. 2015;120(9):4169–95. https://doi.org/10.1002/2014JD022563.

    Article  CAS  Google Scholar 

  222. Pai SJ, Heald CL, Pierce JR, Farina SC, Marais EA, Jimenez JL, et al. An evaluation of global organic aerosol schemes using airborne observations. Atmos Chem Phys. 2020;20(5):2637–65. https://doi.org/10.5194/acp-20-2637-2020.

    Article  CAS  Google Scholar 

  223. Murphy BN, Woody MC, Jimenez JL, Carlton AMG, Hayes PL, Liu S, et al. Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmos Chem Phys. 2017;17(18):11107–33. https://doi.org/10.5194/acp-17-11107-2017.

    Article  CAS  Google Scholar 

  224. Schmedding R, Rasool QZ, Zhang Y, Pye HOT, Zhang H, Chen Y, et al. Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. Atmos Chem Phys. 2020;20(13):8201–25. https://doi.org/10.5194/acp-20-8201-2020.

    Article  CAS  Google Scholar 

  225. Bates KH, Jacob DJ. A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol. Atmos Chem Phys. 2019;19(14):9613–40. https://doi.org/10.5194/acp-19-9613-2019.

    Article  CAS  Google Scholar 

  226. Xu R, Thornton JA, Lee BH, Zhang Y, Jaeglé L, Lopez-Hilfiker FD, et al. Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products. Atmos Chem Phys. 2022;22(8):5477–94. https://doi.org/10.5194/acp-22-5477-2022.

    Article  CAS  Google Scholar 

  227. Pennington EA, Seltzer KM, Murphy BN, Qin M, Seinfeld JH, Pye HOT. Modeling secondary organic aerosol formation from volatile chemical products. Atmos Chem Phys. 2021;21(24):18247–61. https://doi.org/10.5194/acp-21-18247-2021.

    Article  CAS  Google Scholar 

  228. Xie X, Hu J, Qin M, Guo S, Hu M, Wang H, et al. Modeling particulate nitrate in China: current findings and future directions. Environ Int. 2022;166:107369. https://doi.org/10.1016/j.envint.2022.107369.

    Article  CAS  Google Scholar 

  229. Shiraiwa M, Li Y, Tsimpidi AP, Karydis VA, Berkemeier T, Pandis SN, et al. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat Commun. 2017;8(1):15002. https://doi.org/10.1038/ncomms15002.

    Article  Google Scholar 

  230. Kim Y, Sartelet K, Couvidat F. Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model. Atmos Chem Phys. 2019;19(2):1241–61. https://doi.org/10.5194/acp-19-1241-2019.

    Article  CAS  Google Scholar 

  231. Li M, Liu H, Geng G, Hong C, Liu F, Song Y, et al. Anthropogenic emission inventories in China: a review. Natl Sci Rev. 2017;4(6):834–66. https://doi.org/10.1093/nsr/nwx150.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 92044302, 42077199, and 42021004) and the Science and Technology Commission of the Shanghai Municipality (20ZR1447800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Hu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Air Pollution

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, H., Li, L. et al. Modeling Secondary Organic Aerosols in China: State of the Art and Perspectives. Curr Pollution Rep 9, 22–45 (2023). https://doi.org/10.1007/s40726-022-00246-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00246-3

Keywords

Navigation