Skip to main content

Advertisement

Log in

Biogeochemical Control on the Mobilization of Cd in Soil

  • Land Pollution (GM Hettiarachchi and A Juhasz, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a toxic element that can easily enter the human body through the food chain. Rice grain is the main contributor to dietary Cd intake, especially for those populations who consume rice as the staple. Therefore, reducing Cd accumulation in rice is of significance for food safety and human health. In this review, we summarized the major factors underlying the biogeochemical processes controlling Cd availability in soils. Soil pH is one of the most important factors affecting soil Cd availability. An increase in soil pH can dramatically decrease soil Cd solubility; thus, liming is often found to be an effective and economical method in acidic contaminated soils to reduce grain Cd accumulation. The voltaic effect between Cd-sulfide and other metal sulfides formed during soil flooding regulates the remobilization of Cd during soil drainage. Therefore, addition of small amounts of ZnSO4 or MnSO4 to soils can form a protective voltaic cell partner against the oxidative dissolution of Cd sulfides, thereby decreasing Cd remobilization during soil drainage and Cd accumulation in rice grain. The voltaic effect is expected to be more important than their direct competition between Zn2+ and Cd2+. Besides, water management practices markedly affect soil Cd availability by altering the redox status of soils; continuous flooding and delaying drainage of paddy soils during the grain filling period can effectively reduce grain Cd accumulation. These effective biogeochemical strategies can be used singly or combinedly to reduce soil Cd availability and subsequent Cd uptake/accumulation in rice to ensure food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. IARC. Agents classified by the IARC monographs. https://monographs.iarc.fr/agents-classified-by-the-iarc/. 2018.

  2. Chen X, Wang Z-Q, Zhu G-Y, Nordberg GF, Jin T-Y, Ding X-Q. The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. J Expo Sci Environ Epidemiol. 2019b;29(3):435–43.

    Article  CAS  Google Scholar 

  3. Fowler BA, Alexander J, Oskarsson A. Chapter 6: toxic metals in food. In: Nordberg GF, Fowler BA, Nordberg M, editors. Handbook on the Toxicology of Metals. Academic press/Elsevier, 2014. p. 123-128.

  4. Jin T-Y, Nordberg G, Ye T-T, Bo M-H, Wang H-F, Zhu G-Y, et al. Osteoporosis and renal dysfunction in a general population exposed to cadmium in China. Environ Res. 2004;96(3):353–9.

    Article  CAS  Google Scholar 

  5. Nordberg GF, Jin T, Bernard A, Fierens S, Buchet JP, Ye T, et al. Low bone density and renal dysfunction following environmental cadmium exposure in China. AMBIO. 2002;31(6):478–81.

    Article  Google Scholar 

  6. Chen H-P, Tang Z, Wang P, Zhao F-J. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environ Pollut. 2018a;238:482–90.

    Article  CAS  Google Scholar 

  7. Zhao F-J, Ma Y-B, Zhu Y-G, Tang Z, McGrath SP. Soil contamination in China: current status and mitigation strategies. Environ Sci Technol. 2015;49(2):750–9.

    Article  CAS  Google Scholar 

  8. MEE C, MNR C. The report on the national soil contamination survey. http://www.mlr.gov.cn/xwdt/jrxw/201404/t20140417_1312998.htm. 2014.

  9. Zhao F-J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil. 2020;446(1):1–21.

    Article  CAS  Google Scholar 

  10. Song Y, Wang Y-B, Mao W-F, Sui H-X, Yong L, Yang D-J, et al. Dietary cadmium exposure assessment among the Chinese population. PLoS One. 2017;12(5):e0177978.

    Article  Google Scholar 

  11. Qian Y-Z, Chen C, Zhang Q, Li Y, Chen Z-J, Li M. Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control. 2010;21(12):1757–63.

    Article  CAS  Google Scholar 

  12. Zhu H-H, Chen C, Xu C, Zhu Q-H, Huang D-Y. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ Pollut. 2016;219:99–106.

    Article  CAS  Google Scholar 

  13. Nogawa K. Itai-itai disease and follow-up studies. In: Jerome O-N, editor. Cadmium in the Environment. Part II Health effects. New York: John Wiley & Sons; 1981. p. 1–37.

    Google Scholar 

  14. Nogawa K, Sakurai M, Ishizaki M, Kido T, Nakagawa H, Suwazono Y. Threshold limit values of the cadmium concentration in rice in the development of itai-itai disease using benchmark dose analysis. J Appl Toxicol. 2017;37(8):962–6.

    Article  CAS  Google Scholar 

  15. Wang P, Chen H-P, Kopittke PM, Zhao F-J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut. 2019b;249:1038–48.

    Article  CAS  Google Scholar 

  16. Smolders E, Mertens J. Cadmium. In: Alloway B, editor. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Part II: Key Heavy Metals and Metalloids. Environmental pollution, 2012. p. 283-312.

  17. Christensen TH. Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH, and calcium. Water Air Soil Pollut. 1984;21(1-4):105–14.

    Article  CAS  Google Scholar 

  18. Wang J, Wang P-M, Gu Y, Kopittke P-M, Zhao F-J, Wang P. Iron–manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of cd during soil drainage in paddy soil systems. Environ Sci Technol. 2019a;53(5):2500–8.

    Article  CAS  Google Scholar 

  19. Wang P, Kopittke PM, McGrath SP, Zhao F-J. Cadmium transfer from soil to plants and its potential risk to human health. In: Singh BR, McLaughlin MJ, Brevik E, editors. The Nexus of soils, plants, animals and human health. Catena- Schweizerbart: Stuttgart, 2017. p. 138-147.

  20. Cai Z-J, Wang B-R, Xu M-G, Zhang H-M, He X-H, Zhang L, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J Soils Sediments. 2015;15(2):260–70.

    Article  CAS  Google Scholar 

  21. Sainju U-M, Ghimire R, Pradhan G-P. Nitrogen fertilization I: impact on crop, soil, and environment. In: Rigobelo EC, Serra AP, editors. Nitrogen Fixation. IntechOpen, 2019. p. 1-24.

  22. Tian D-S, Niu S-L. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett. 2015;10(2):024019.

    Article  Google Scholar 

  23. Zeng M-F, de Vries W, Bonten LT, Zhu Q-C, Hao T-X, Liu X-J, et al. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environ Sci Technol. 2017;51(7):3843–51.

    Article  CAS  Google Scholar 

  24. Guo J-H, Liu X-J, Zhang Y, Shen J-L, Han W-X, Zhang W-F, et al. Significant acidification in major Chinese croplands. Science. 2010;327(5968):1008–10.

    Article  CAS  Google Scholar 

  25. Zhu Q-C, Liu X-J, Hao T-X, Zeng M-F, Shen J-B, Zhang F-S, et al. Cropland acidification increases risk of yield losses and food insecurity in China. Environ Pollut. 2020;256:113145.

    Article  CAS  Google Scholar 

  26. Du Y-Y, Wang X, Ji X-H, Zhang Z-X, Saha UK, Xie W-C, et al. Effectiveness and potential risk of CaO application in Cd-contaminated paddy soil. Chemosphere. 2018;204:130–9.

    Article  CAS  Google Scholar 

  27. Guo F-Y, Ding C-F, Zhou Z-G, Huang G-X, Wang X-X. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification. Ecotoxicol Environ Saf. 2018;161:164–72.

    Article  CAS  Google Scholar 

  28. Wang C, Li W, Yang Z-F, Chen Y, Shao W-J, Ji J-F. An invisible soil acidification: critical role of soil carbonate and its impact on heavy metal bioavailability. Sci Rep. 2015;5(1):1–9.

    Google Scholar 

  29. Holland J, White P, Glendining M, Goulding K, McGrath S. Yield responses of arable crops to liming–an evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur J Agron. 2019;105:176–88.

    Article  CAS  Google Scholar 

  30. Tiritan C-S, Büll L-T, Crusciol CA, Carmeis Filho AC, Fernandes D-M, Nascente A-S. Tillage system and lime application in a tropical region: soil chemical fertility and corn yield in succession to degraded pastures. Soil Tillage Res. 2016;155:437–47.

    Article  Google Scholar 

  31. Chen H-P, Zhang W-W, Yang X-P, Wang P, McGrath SP, Zhao F-J. Effective methods to reduce cadmium accumulation in rice grain. Chemosphere. 2018b;207:699–707.

    Article  CAS  Google Scholar 

  32. Kim H-S, Kim K-R, Kim H-J, Yoon J-H, Yang JE, Ok YS, et al. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ Earth Sci. 2015;74(2):1249–59.

    Article  CAS  Google Scholar 

  33. Zhang J, Wang X, Zhang L-X, Zhao F-J. Reducing cadmium bioavailability and accumulation in vegetable by an alkalizing bacterial strain. Sci Total Environ. 2020;143596.

  34. Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol. 2016;50(8):4178–85.

    Article  CAS  Google Scholar 

  35. Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol. 2010;44(1):15–23.

    Article  CAS  Google Scholar 

  36. Chen H-P, Wang P, Chang J-D, Kopittke P-M, Zhao F-J. Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils. Chemosphere. 2020;128893.

  37. Fulda B, Voegelin A, Kretzschmar R. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environ Sci Technol. 2013b;47(22):12775–83.

    Article  CAS  Google Scholar 

  38. Khaokaew S, Chaney RL, Landrot G, Ginder-Vogel M, Sparks DL. Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions. Environ Sci Technol. 2011;45(10):4249–55.

    Article  CAS  Google Scholar 

  39. Barrett K, McBride MB. Dissolution of zinc-cadmium sulfide solid solutions in aerated aqueous suspension. Soil Sci Soc Am J. 2007;71(2):322–8.

    Article  CAS  Google Scholar 

  40. de Livera J, McLaughlin MJ, Beak D, Hettiarachchi GM, Kirby J. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals. Soil Sci Soc Am J. 2011a;75(3):842–54.

    Article  Google Scholar 

  41. Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol. 2009;43(24):9361–7.

    Article  CAS  Google Scholar 

  42. Inahara M, Ogawa Y, Azuma H. Countermeasure by means of flooding in latter growth stage to restrain cadmium uptake by lowland rice [Oryza sativa]. Jpn J Soil Sci Plant Nutr. 2007;78(2):149–55.

    CAS  Google Scholar 

  43. Barron V, Torrent J. Iron, manganese and aluminium oxides and oxyhydroxides. Minerals at the Nanoscale. 2013;14:297–336.

    Article  Google Scholar 

  44. Jenne EA, Luoma SN. Forms of trace elements in soils, sediments, and associated waters: an overview of their determination and biological availability. Washington, AGRIS: Biological Implications of Metals in the Environment; 1975. p. 110–43.

    Google Scholar 

  45. Guo T-Z, DeLaune R, Patrick W Jr. The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environ Int. 1997;23(3):305–16.

    Article  CAS  Google Scholar 

  46. Suda A, Makino T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review. Geoderma. 2016;270:68–75.

    Article  CAS  Google Scholar 

  47. Xu X-W, Wang P, Zhang J, Chen C, Wang Z-P, Kopittke PM, et al. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environ Pollut. 2019;251:952–60.

    Article  CAS  Google Scholar 

  48. Yu H-Y, Li F-B, Liu C-S, Huang W-L, Liu T-X, Yu W-M. Chapter 5 - Iron redox cycling coupled to transformation and immobilization of heavy metals: implications for paddy rice safety in the red soil of South China. In: Sparks D, editor. Advances in Agronomy. Elsevier, 2016. p. 279-317.

  49. Hettiarachchi GM, Ryan JA, Chaney RL, La Fleur CM. Sorption and desorption of cadmium by different fractions of biosolids-amended soils. J Environ Qual. 2003;32(5):1684–93.

    Article  CAS  Google Scholar 

  50. Michálková Z, Komárek M, Šillerová H, Della Puppa L, Joussein E, Bordas F, et al. Evaluating the potential of three Fe-and Mn-(nano) oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J Environ Manag. 2014;146:226–34.

    Article  Google Scholar 

  51. Huang J-H, Wang S-L, Lin J-H, Chen Y-M, Wang M-K. Dynamics of cadmium concentration in contaminated rice paddy soils with submerging time. Paddy Water Environ. 2013;11(1-4):483–91.

    Article  Google Scholar 

  52. Wang X-Q, Yu H-Y, Li F-B, Liu T-X, Wu W-J, Liu C-P, et al. Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: possible mechanisms and environmental implications. Sci Total Environ. 2019c;649:535–43.

    Article  CAS  Google Scholar 

  53. Wang Y-L, Xu Y-M, Liang X-F, Sun Y-B, Huang Q-Q, Peng Y-Y. Leaching behavior and efficiency of cadmium in alkaline soil by adding two novel immobilization materials. Sci Total Environ. 2020;710:135964.

    Article  CAS  Google Scholar 

  54. Chen H, Lei J, Tong H, Gu M-H, Fang Y, Wang X-L, et al. Effects of Mn (II) on the oxidation of Fe in soils and the uptake of cadmium by rice (Oryza sativa). Water Air Soil Pollut. 2019a;230(8):190.

    Article  Google Scholar 

  55. Li X-C, Yang Z-Z, Zhang C, Wei J-J, Zhang H-Q, Li Z-H, et al. Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. Chem Eng J. 2019;373:307–17.

    Article  CAS  Google Scholar 

  56. Hashimoto Y, Furuya M, Yamaguchi N, Makino T. Zerovalent iron with high sulfur content enhances the formation of cadmium sulfide in reduced paddy soils. Soil Sci Soc Am J. 2016;80(1):55–63.

    Article  CAS  Google Scholar 

  57. Hashimoto Y, Yamaguchi N. Chemical speciation of cadmium and sulfur K-edge XANES spectroscopy in flooded paddy soils amended with zerovalent iron. Soil Sci Soc Am J. 2013;77(4):1189–98.

    Article  CAS  Google Scholar 

  58. Furukawa Y, J-w K, Watkins J, Wilkin RT. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ Sci Technol. 2002;36(24):5469–75.

    Article  CAS  Google Scholar 

  59. Huang H, Chen H-P, Kopittke PM, Kretzschmar R, Zhao F-J, Wang P. The voltaic effect as a novel mechanism controlling the remobilization of cadmium in paddy soils during drainage. Environ Sci Technol. 2021;55(3):1750–8.

    Article  CAS  Google Scholar 

  60. Weber F-A, Voegelin A, Kaegi R, Kretzschmar R. Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nat Geosci. 2009;2(4):267–71.

    Article  CAS  Google Scholar 

  61. de Livera J, McLaughlin MJ, Hettiarachchi GM, Kirby JK, Beak DG. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. Sci Total Environ. 2011b;409(8):1489–97.

    Article  Google Scholar 

  62. Fulda B, Voegelin A, Ehlert K, Kretzschmar R. Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. Geochim Cosmochim Acta. 2013a;123:385–402.

    Article  CAS  Google Scholar 

  63. Fulda B. Changes in copper and cadmium solubility and speciation induced by soil redox dynamics: competitive metal sulfide formation and interactions with natural organic matter, ETH Zurich, 2013.

    Google Scholar 

  64. Ok YS, Kim S-C, Kim D-K, Skousen JG, Lee J-S, Cheong Y-W, et al. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ Geochem Health. 2011;33(1):23–30.

    Article  CAS  Google Scholar 

  65. Watanabe T, Murata Y, Nakamura T, Sakai Y, Osaki M. Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils. J Plant Nutr. 2009;32(7):1164–72.

    Article  CAS  Google Scholar 

  66. Furuya M, Hashimoto Y, Yamaguchi N. Time-course changes in speciation and solubility of cadmium in reduced and oxidized paddy soils. Soil Sci Soc Am J. 2016;80(4):870–7.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Natural Science Foundation of China (grant No. 41977375), the National Key Research and Development Program of China (grant No. 2018YFC1800502), and the Natural Science Fund for Jiangsu Distinguished Young Scholar (BK20180025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Land Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zhao, D. & Wang, P. Biogeochemical Control on the Mobilization of Cd in Soil. Curr Pollution Rep 7, 194–200 (2021). https://doi.org/10.1007/s40726-021-00180-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00180-w

Keywords

Navigation