Skip to main content

Advertisement

Log in

Advances in Modified Wood-Based Adsorbents for Contaminant Removal: Valorization Methods, Modification Mechanisms, and Environmental Applications

  • Wood Structure and Function (M Watt, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Wood-based adsorbents are increasingly used for environmental applications. They demonstrate considerable advantages, including renewable feedstock, relatively simple preparation processes, and advantageous structural and surface properties. In short, they provide environmentally friendly, effective, and economical sources for contaminant removal. This review summarizes recent advances in the preparation and use of selected modified wood-based residues (biochar, ash, and cellulose) as adsorbents for environmental applications (water, air, and soil remediation).

Recent Findings

Although chemical modifications have produced better results for wood-based adsorbents, the inherent corrosion problems and safety issues have made physical modifications more feasible on an industrial scale. For environmental remediation, inorganic contaminants can be removed by raw and modified wood-based adsorbents, mainly via electrostatic interaction, surface complexation, pore filling, and ion exchange. Organic contaminants are removed via van der Waals forces between unsaturated polycyclic molecules, pore filling, and hydrogen bonding. Specific surface area and porosity are critical parameters for effective contaminant adsorption, mostly from water and air. A comparison of wood-based residues used for wastewater treatment ranked the efficiency as ash > cellulose > biochar versus cellulose > biochar > ash for air remediation. Adding modified wood residues to soil enhances the fertility and biological characteristics in addition to remediation. Moreover, spent wood-based adsorbents can be used in construction materials, soil fertilizers, and catalysts.

Summary

This review summarizes classical and new physical and chemical methods for modifying wood adsorbents and the impacts on physiochemical characteristics such as porosity, pore volume, surface area, and surface functional groups. Also addressed are the adsorption capacity and efficiency of raw and modified wood adsorbents for removing contaminants from synthetic effluents, mine water, air, and soil. Valorization methods for spent modified wood-based adsorbents are then outlined. Suggestions and prospects are given for future studies on environmental decontamination by wood residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhang J, Koubaa A, Tao Y, Li P, Xing D. The emerging development of transparent wood: materials, characteristics, and applications. Curr For Rep. 2022;8(4):333–45. https://doi.org/10.1007/s40725-022-00172-z.

    Article  Google Scholar 

  2. ••Braghiroli FL, Passarini L. Valorizing biomass residues from forest operations and wood manufacturing presents many sustainable and innovative possibilities. Curr For Rep. 2020;6(2):172–83. https://doi.org/10.1007/s40725-020-00112-9. This review provides information on the valorization of forest biomass residues.

  3. Durocher C, Thiffault E, Achim A, Auty D, Barrette J. Untapped volume of surplus forest growth as feedstock for bioenergy. Biomass Bioenergy. 2019;120:376–86. https://doi.org/10.1016/j.biombioe.2018.11.024.

    Article  Google Scholar 

  4. Kizha AR, Han H-S. Forest residues recovered from whole-tree timber harvesting operations. Eur J For Eng. 2015;1(2):46–55. Retrieved from https://dergipark.org.tr/en/pub/ejfe/issue/17009/281374

  5. Saravanakumar A, Vijayakumar P, Hoang AT, Kwon EE, Chen W-H. Thermochemical conversion of large-size woody biomass for carbon neutrality: principles, applications, and issues. Bioresour Technol. 2023;370:128562. https://doi.org/10.1016/j.biortech.2022.128562.

    Article  CAS  Google Scholar 

  6. Spinelli R, Eliasson L, Han H-S. A critical review of comminution technology and operational logistics of wood chips. Curr For Rep. 2020;6(3):210–9. https://doi.org/10.1007/s40725-020-00120-9.

    Article  Google Scholar 

  7. Shaheen SM, Niazi NK, Hassan NEE, Bibi I, Wang H, Tsang Daniel CW, et al. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev. 2019;64(4):216–47. https://doi.org/10.1080/09506608.2018.1473096.

    Article  CAS  Google Scholar 

  8. Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK. Environmental application of biochar: current status and perspectives. Bioresour Technol. 2017;246:110–22. https://doi.org/10.1016/j.biortech.2017.08.122.

    Article  CAS  Google Scholar 

  9. •Zhang L, Guo L, Wei G. Recent advances in the fabrication and environmental science applications of cellulose nanofibril-based functional materials. Materials. 2021;14(18). https://doi.org/10.3390/ma14185390. This paper reviews cellulose functionalization strategies for environmental science applications.

  10. Braghiroli FL, Bouafif H, Neculita CM, Koubaa A. Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Wat Air Soil Poll. 2018;229(7):230. https://doi.org/10.1007/s11270-018-3889-8.

    Article  CAS  Google Scholar 

  11. Zhang X, Sun P, Wei K, Huang X, Zhang X. Enhanced H2O2 activation and sulfamethoxazole degradation by Fe-impregnated biochar. Chem Eng J. 2020;385:123921. https://doi.org/10.1016/j.cej.2019.123921.

    Article  CAS  Google Scholar 

  12. Liu C, Zhang H-X. Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: a critical review. J Environ Chem Eng. 2022;10(2):107393. https://doi.org/10.1016/j.jece.2022.107393.

    Article  CAS  Google Scholar 

  13. Kumar M, Dutta S, You S, Luo G, Zhang S, Show PL, et al. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. J Clean Prod. 2021;305:127143. https://doi.org/10.1016/j.jclepro.2021.127143.

    Article  CAS  Google Scholar 

  14. Li Q, Yu W, Guo L, Wang Y, Zhao S, Zhou L, et al. Sorption of sulfamethoxazole on inorganic acid solution-etched biochar derived from alfalfa. Materials. 2021;14(4). https://doi.org/10.3390/ma14041033.

  15. Cheng N, Wang B, Wu P, Lee X, Xing Y, Chen M, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: a review. Environ Pollut. 2021;273:116448. https://doi.org/10.1016/j.envpol.2021.116448.

    Article  CAS  Google Scholar 

  16. Zhu S, Zhao J, Zhao N, Yang X, Chen C, Shang J. Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water. J Clean Prod. 2020;247:119579. https://doi.org/10.1016/j.jclepro.2019.119579.

    Article  CAS  Google Scholar 

  17. Huang K, Hu C, Tan Q, Yu M, Shabala S, Yang L, et al. Highly efficient removal of cadmium from aqueous solution by ammonium polyphosphate-modified biochar. Chemosphere. 2022;305:135471. https://doi.org/10.1016/j.chemosphere.2022.135471.

    Article  CAS  Google Scholar 

  18. Zhang P, Tian X, Fu D. CO2 removal in tray tower by using AAILs activated MDEA aqueous solution. Energy. 2018;161:1122–32. https://doi.org/10.1016/j.energy.2018.07.162.

    Article  CAS  Google Scholar 

  19. Calugaru IL, Neculita CM, Genty T, Zagury GJ. Metals and metalloids treatment in contaminated neutral effluents using modified materials. J Environ Manage. 2018;212:142–59. https://doi.org/10.1016/j.jenvman.2018.02.002.

    Article  CAS  Google Scholar 

  20. Hussain Z, Chang N, Sun J, Xiang S, Ayaz T, Zhang H, et al. Modification of coal fly ash and its use as a low-cost adsorbent for the removal of directive, acid, and reactive dyes. J Hazard Mater. 2022;422:126778. https://doi.org/10.1016/j.jhazmat.2021.126778.

    Article  CAS  Google Scholar 

  21. Qiu R, Cheng F, Huang H. Removal of Cd2+ from aqueous solution using hydrothermally modified circulating fluidized bed fly ash resulting from coal gangue power plant. J Clean Prod. 2018;172:1918–27. https://doi.org/10.1016/j.jclepro.2017.11.236.

    Article  CAS  Google Scholar 

  22. Gao M, Ma Q, Lin Q, Chang J, Bao W, Ma H. Combined modification of fly ash with Ca(OH)2/Na2FeO4 and its adsorption of methyl orange. Appl Surf Sci. 2015;359:323–30. https://doi.org/10.1016/j.apsusc.2015.10.135.

    Article  CAS  Google Scholar 

  23. Attari M, Bukhari SS, Kazemian H, Rohani S. A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. J Environ Chem Eng. 2017;5(1):391–9. https://doi.org/10.1016/j.jece.2016.12.014.

    Article  CAS  Google Scholar 

  24. Ranasinghe RAJC, Hansima MACK, Nanayakkara KGN. Adsorptive removal of fluoride from water by chemically modified coal fly ash: synthesis, characterization, kinetics, and mechanisms. Ground Sustain Dev. 2022;16:100699. https://doi.org/10.1016/j.gsd.2021.100699.

    Article  Google Scholar 

  25. Chai F, Wang R, Yan L, Li G, Cai Y, Xi C. Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient As(V) removal. Carbohydr Polym. 2020;245:116511. https://doi.org/10.1016/j.carbpol.2020.116511.

    Article  CAS  Google Scholar 

  26. Zhao F, Repo E, Song Y, Yin D, Hammouda SB, Chen L, et al. Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chem. 2017;19(20):4816–28. https://doi.org/10.1039/C7GC01770G.

    Article  CAS  Google Scholar 

  27. Dufresne A. Nanocellulose processing properties and potential applications. Curr For Rep. 2019;5(2):76–89. https://doi.org/10.1007/s40725-019-00088-1.

    Article  Google Scholar 

  28. Georgouvelas D, Jalvo B, Valencia L, Papawassiliou W, Pell AJ, Edlund U, et al. Residual lignin and zwitterionic polymer grafts on cellulose nanocrystals for antifouling and antibacterial applications. ACS Appl Polym Mater. 2020;2(8):3060–71. https://doi.org/10.1021/acsapm.0c00212.

    Article  CAS  Google Scholar 

  29. Lei C, Gao J, Ren W, Xie Y, Abdalkarim SYH, Wang S, et al. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr Polym. 2019;205:35–41. https://doi.org/10.1016/j.carbpol.2018.10.029.

    Article  CAS  Google Scholar 

  30. Wang Y, Gong Y, Lin N, Jiang H, Wei X, Liu N, et al. Cellulose hydrogel coated nanometer zero-valent iron intercalated montmorillonite (CH-MMT-nFe0) for enhanced reductive removal of Cr(VI): characterization, performance, and mechanisms. J Mol Liq. 2022;347:118355. https://doi.org/10.1016/j.molliq.2021.118355.

    Article  CAS  Google Scholar 

  31. Ambika S, Kumar M, Pisharody L, Malhotra M, Kumar G, Sreedharan V, et al. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: mechanisms, methods, and prospects. Chem Eng J. 2022;439:135716. https://doi.org/10.1016/j.cej.2022.135716.

    Article  CAS  Google Scholar 

  32. Lyu H, Gao B, He F, Zimmerman AR, Ding C, Tang J, et al. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem Eng J. 2018;335:110–9. https://doi.org/10.1016/j.cej.2017.10.130.

    Article  CAS  Google Scholar 

  33. ••Sajjadi B, Chen W-Y, Egiebor NO. A comprehensive review on physical activation of biochar for energy and environmental applications. Rev Chem Eng. 2019;35(6):735–76. https://doi.org/10.1515/revce-2017-0113. Excellent review paper on physical modification methods and their impact on physiochemical properties of biochar.

  34. Oyehan TA, Salami BA, Badmus SO, Saleh TA. Technological trends in activation and modification of palm oil fuel ash for advanced water and wastewater treatment – a review. Sustain Chem Pharm. 2022;29:100754. https://doi.org/10.1016/j.scp.2022.100754.

    Article  CAS  Google Scholar 

  35. Tan S, Zhou G, Yang Q, Ge S, Liu J, Cheng YW, et al. Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: a review. Sci Total Environ. 2023;864:160990. https://doi.org/10.1016/j.scitotenv.2022.160990.

    Article  CAS  Google Scholar 

  36. Kumar A, Singh E, Mishra R, Kumar S. Biochar as environmental armor and its diverse role towards protecting soil, water, and air. Sci Total Environ. 2022;806:150444. https://doi.org/10.1016/j.scitotenv.2021.150444.

    Article  CAS  Google Scholar 

  37. Guo Y, Zhao C, Chen X, Li C. CO2 capture and sorbent regeneration performances of some wood ash materials. Appl Energy. 2015;137:26–36. https://doi.org/10.1016/j.apenergy.2014.09.086.

    Article  CAS  Google Scholar 

  38. Braghiroli FL, Bouafif H, Neculita CM, Koubaa A. Influence of pyro-gasification and activation conditions on the porosity of activated biochars: a literature review. Waste Biomass Valorization. 2020;11(9):5079–98. https://doi.org/10.1007/s12649-019-00797-5.

    Article  CAS  Google Scholar 

  39. Braghiroli FL, Bouafif H, Koubaa A. Enhanced SO2 adsorption and desorption on chemically and physically activated biochar made from wood residues. Ind Crops Prod. 2019;138:111456. https://doi.org/10.1016/j.indcrop.2019.06.019.

    Article  CAS  Google Scholar 

  40. ••Gargiulo V, Gomis-Berenguer A, Giudicianni P, Ania CO, Ragucci R, Alfè M. Assessing the potential of biochars prepared by steam-assisted slow pyrolysis for CO2 adsorption and separation. Energy Fuels. 2018;32(10):10218–27. https://doi.org/10.1021/acs.energyfuels.8b01058. This study investigated how the surface area and porosity of modified wood-based biochar affected SO2 adsorption.

  41. •Braghiroli FL, Bouafif H, Hamza N, Neculita CM, Koubaa A. Production, characterization, and potential of activated biochar as adsorbent for phenolic compounds from leachates in a lumber industry site. Environ Sci Pollut Res. 2018;25(26):26562–75. https://doi.org/10.1007/s11356-018-2712-9. This paper analyzes the effect of steam-assisted pyrolysis method on biochar for CO2 adsorption.

  42. Wang B, Gao B, Fang J. Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol. 2017;47(22):2158–207. https://doi.org/10.1080/10643389.2017.1418580.

    Article  CAS  Google Scholar 

  43. Xiang W, Zhang X, Chen K, Fang J, He F, Hu X, et al. Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chem Eng J. 2020;385:123842. https://doi.org/10.1016/j.cej.2019.123842.

    Article  CAS  Google Scholar 

  44. Huang J, Zimmerman AR, Chen H, Gao B. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater. Environ Pollut. 2020;258:113809. https://doi.org/10.1016/j.envpol.2019.113809.

    Article  CAS  Google Scholar 

  45. Zhuang J, Rong N, Wang X, Chen C, Xu Z. Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water. Sep Purif Technol. 2022;293:121133. https://doi.org/10.1016/j.seppur.2022.121133.

    Article  CAS  Google Scholar 

  46. Xiao W-D, Xiao L-P, Xiao W-Z, Liu K, Zhang Y, Zhang H-Y, et al. Cellulose-based bio-adsorbent from TEMPO-oxidized natural loofah for effective removal of Pb(II) and methylene blue. Int J Biol Macromol. 2022;218:285–94. https://doi.org/10.1016/j.ijbiomac.2022.07.130.

    Article  CAS  Google Scholar 

  47. Qin C-C, Abdalkarim SYH, Zhou Y, Yu H-Y, He X. Ultrahigh water-retention cellulose hydrogels as soil amendments for early seed germination under harsh conditions. J Clean Prod. 2022;370:133602. https://doi.org/10.1016/j.jclepro.2022.133602.

    Article  CAS  Google Scholar 

  48. Shafawi AN, Mohamed AR, Lahijani P, Mohammadi M. Recent advances in developing engineered biochar for CO2 capture: an insight into the biochar modification approaches. J Environ Chem Eng. 2021;9(6):106869. https://doi.org/10.1016/j.jece.2021.106869.

    Article  CAS  Google Scholar 

  49. Guo T, Ma N, Pan Y, Bedane AH, Xiao H, Eić M, et al. Characteristics of CO2 adsorption on biochar derived from biomass pyrolysis in molten salt. Can J Chem Eng. 2018;96(11):2352–60. https://doi.org/10.1002/cjce.23153.

    Article  CAS  Google Scholar 

  50. Ma Q, Chen W, Jin Z, Chen L, Zhou Q, Jiang X. One-step synthesis of microporous nitrogen-doped biochar for efficient removal of CO2 and H2S. Fuel. 2021;289:119932. https://doi.org/10.1016/j.fuel.2020.119932.

    Article  CAS  Google Scholar 

  51. Chatterjee R, Sajjadi B, Mattern DL, Chen W-Y, Zubatiuk T, Leszczynska D, et al. Ultrasound cavitation intensified amine functionalization: a feasible strategy for enhancing CO2 capture capacity of biochar. Fuel. 2018;225:287–98. https://doi.org/10.1016/j.fuel.2018.03.145.

    Article  CAS  Google Scholar 

  52. Truong HB, Ike IA, Ok YS, Hur J. Polyethyleneimine modification of activated fly ash and biochar for enhanced removal of natural organic matter from water via adsorption. Chemosphere. 2020;243:125454. https://doi.org/10.1016/j.chemosphere.2019.125454.

    Article  CAS  Google Scholar 

  53. Jawad AH, Malek NNA, Abdulhameed AS, Razuan R. Synthesis of magnetic chitosan-fly ash/Fe3O4 composite for adsorption of reactive orange 16 dye: optimization by Box-Behnken design. J Polym Environ. 2020;28(3):1068–82. https://doi.org/10.1007/s10924-020-01669-z.

    Article  CAS  Google Scholar 

  54. Cimirro NFGM, Lima EC, Cunha MR, Thue PS, Grimm A, dos Reis GS, et al. Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J Mol Liq. 2022;364:119979. https://doi.org/10.1016/j.molliq.2022.119979.

    Article  CAS  Google Scholar 

  55. Zhou Z, Liu P, Wang S, Finfrock YZ, Ye Z, Feng Y, et al. Iron-modified biochar-based bilayer permeable reactive barrier for Cr(VI) removal. J Hazard Mater. 2022;439:129636. https://doi.org/10.1016/j.jhazmat.2022.129636.

    Article  CAS  Google Scholar 

  56. Liao W, Zhang X, Shao J, Yang H, Zhang S, Chen H. Simultaneous removal of cadmium and lead by biochar modified with layered double hydroxide. Fuel Process Technol. 2022;235:107389. https://doi.org/10.1016/j.fuproc.2022.107389.

    Article  CAS  Google Scholar 

  57. Xu B, Shi W-Y, Sun W, Pan L-M, Dong Y-Q. Investigation on synergistic effect of CuCl2 and FeCl3 impregnated into fly ash on mercury removal by experiment and density functional theory. Appl Surf Sci. 2021;565:150484. https://doi.org/10.1016/j.apsusc.2021.150484.

    Article  CAS  Google Scholar 

  58. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071.

    Article  CAS  Google Scholar 

  59. Aigbe UO, Ukhurebor KE, Onyancha RB, Osibote OA, Darmokoesoemo H, Kusuma HS. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. J Mater Res Technol. 2021;14:2751–74. https://doi.org/10.1016/j.jmrt.2021.07.140.

    Article  CAS  Google Scholar 

  60. Huang J, Zimmerman AR, Chen H, Wan Y, Zheng Y, Yang Y, et al. Fixed bed column performance of Al-modified biochar for the removal of sulfamethoxazole and sulfapyridine antibiotics from wastewater. Chemosphere. 2022;305:135475. https://doi.org/10.1016/j.chemosphere.2022.135475.

    Article  CAS  Google Scholar 

  61. Zheng Y, Yang Y, Zhang Y, Zou W, Luo Y, Dong L, et al. Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation. Biochar. 2019;1(1):89–96. https://doi.org/10.1007/s42773-019-00007-4.

    Article  Google Scholar 

  62. Filipinas JQ, Rivera KKP, Ong DC, Pingul-Ong SMB, Abarca RRM, de Luna MDG. Removal of sodium diclofenac from aqueous solutions by rice hull biochar. Biochar. 2021;3(2):189–200. https://doi.org/10.1007/s42773-020-00079-7.

    Article  CAS  Google Scholar 

  63. Li Y, Shang H, Cao Y, Yang C, Feng Y, Yu Y. High performance removal of sulfamethoxazole using large specific area of biochar derived from corncob xylose residue. Biochar. 2022;4(1):11. https://doi.org/10.1007/s42773-021-00128-9.

    Article  CAS  Google Scholar 

  64. Güleç F, Williams O, Kostas ET, Samson A, Stevens LA, Lester E. A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies. Fuel. 2022;330:125428. https://doi.org/10.1016/j.fuel.2022.125428.

    Article  CAS  Google Scholar 

  65. Pinto AH, Taylor JK, Chandradat R, Lam E, Liu Y, Leung ACW, et al. Wood-based cellulose nanocrystals as adsorbent of cationic toxic dye, Auramine O, for water treatment. J Environ Chem Eng. 2020;8(5):104187. https://doi.org/10.1016/j.jece.2020.104187.

    Article  CAS  Google Scholar 

  66. Olabemiwo FA, Tawabini BS, Patel F, Oyehan TA, Khaled M, Laoui T. Cadmium removal from contaminated water using polyelectrolyte-coated industrial waste fly ash. Bioinorg Chem Appl. 2017;2017:7298351. https://doi.org/10.1155/2017/7298351.

    Article  CAS  Google Scholar 

  67. Ihsanullah AA, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol. 2016;157:141–61. https://doi.org/10.1016/j.seppur.2015.11.039.

    Article  CAS  Google Scholar 

  68. Keshvardoostchokami M, Majidi M, Zamani A, Liu B. A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: removal of nitrogen-containing pollutants. Carbohydr Polym. 2021;273:118625. https://doi.org/10.1016/j.carbpol.2021.118625.

    Article  CAS  Google Scholar 

  69. Braghiroli FL, Bouafif H, Neculita CM, Koubaa A. Performance of physically and chemically activated biochars in copper removal from contaminated mine effluents. Wat Air Soil Poll. 2019;230(8):178. https://doi.org/10.1007/s11270-019-4233-7.

    Article  CAS  Google Scholar 

  70. Braghiroli FL, Calugaru IL, Gonzalez-Merchan C, Neculita CM, Bouafif H, Koubaa A. Efficiency of eight modified materials for As(V) removal from synthetic and real mine effluents. Miner Eng. 2020;151:106310. https://doi.org/10.1016/j.mineng.2020.106310.

    Article  CAS  Google Scholar 

  71. Mehmood T, Khan AU, Raj Dandamudi KP, Deng S, Helal MH, Ali HM, et al. Oil tea shell synthesized biochar adsorptive utilization for the nitrate removal from aqueous media. Chemosphere. 2022;307:136045. https://doi.org/10.1016/j.chemosphere.2022.136045.

    Article  CAS  Google Scholar 

  72. Cruz H, Luckman P, Seviour T, Verstraete W, Laycock B, Pikaar I. Rapid removal of ammonium from domestic wastewater using polymer hydrogels. Sci Rep. 2018;8(1):2912. https://doi.org/10.1038/s41598-018-21204-4.

    Article  CAS  Google Scholar 

  73. Keshvardoostchokami M, Babaei S, Piri F, Zamani A. Nitrate removal from aqueous solutions by ZnO nanoparticles and chitosan-polystyrene–Zn nanocomposite: kinetic, isotherm, batch and fixed-bed studies. Int J Biol Macromol. 2017;101:922–30. https://doi.org/10.1016/j.ijbiomac.2017.03.162.

    Article  CAS  Google Scholar 

  74. Zhu S, Qu T, Irshad MK, Shang J. Simultaneous removal of Cd(II) and As(III) from co-contaminated aqueous solution by α-FeOOH modified biochar. Biochar. 2020;2(1):81–92. https://doi.org/10.1007/s42773-020-00040-8.

    Article  Google Scholar 

  75. Li Y, Shaheen SM, Azeem M, Zhang L, Feng C, Peng J, et al. Removal of lead (Pb+2) from contaminated water using a novel MoO3-biochar composite: performance and mechanism. Environ Pollut. 2022;308:119693. https://doi.org/10.1016/j.envpol.2022.119693.

    Article  CAS  Google Scholar 

  76. Calugaru IL, Neculita CM, Genty T, Zagury GJ. Removal efficiency of As(V) and Sb(III) in contaminated neutral drainage by Fe-loaded biochar. Environ Sci Pollut Res. 2019;26(9):9322–32. https://doi.org/10.1007/s11356-019-04381-1.

    Article  CAS  Google Scholar 

  77. Braghiroli FL, Calugaru IL, Gonzalez-Merchan C, Neculita CM, Bouafif H, Koubaa A. Efficiency of eight modified materials for As(V) removal from synthetic and real mine effluents. Mine Eng. 2020;151:106310. https://doi.org/10.1016/j.mineng.2020.106310.

    Article  CAS  Google Scholar 

  78. •Wang T, Zhang D, Fang K, Zhu W, Peng Q, Xie Z. Enhanced nitrate removal by physical activation and Mg/Al layered double hydroxide modified biochar derived from wood waste: adsorption characteristics and mechanisms. J Environ Chem Eng. 2021;9(4):105184. https://doi.org/10.1016/j.jece.2021.105184. This study showed that modification of wood biochar via metal-doping method significantly improved nitrate removal.

  79. Wan Ngah WS, Endud CS, Mayanar R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym. 2002;50(2):181–90. https://doi.org/10.1016/S1381-5148(01)00113-4.

    Article  Google Scholar 

  80. Park J-H, Eom J-H, Lee S-L, Hwang S-W, Kim S-H, Kang S-W, et al. Exploration of the potential capacity of fly ash and bottom ash derived from wood pellet-based thermal power plant for heavy metal removal. Sci Total Environ. 2020;740:140205. https://doi.org/10.1016/j.scitotenv.2020.140205.

    Article  CAS  Google Scholar 

  81. Barbosa RFS, Souza AG, Maltez HF, Rosa DS. Chromium removal from contaminated wastewaters using biodegradable membranes containing cellulose nanostructures. Chem Eng J. 2020;395:125055. https://doi.org/10.1016/j.cej.2020.125055.

    Article  CAS  Google Scholar 

  82. Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, et al. Flexible brushite/nanofibrillated cellulose aerogels for efficient and selective removal of copper(II). Chem Eng J. 2022;450:138262. https://doi.org/10.1016/j.cej.2022.138262.

    Article  CAS  Google Scholar 

  83. Oyewo OA, Mutesse B, Leswifi TY, Onyango MS. Highly efficient removal of nickel and cadmium from water using sawdust-derived cellulose nanocrystals. J Environ Chem Eng. 2019;7(4):103251. https://doi.org/10.1016/j.jece.2019.103251.

    Article  CAS  Google Scholar 

  84. Georgouvelas D, Abdelhamid HN, Li J, Edlund U, Mathew AP. All-cellulose functional membranes for water treatment: adsorption of metal ions and catalytic decolorization of dyes. Carbohydr Polym. 2021;264:118044. https://doi.org/10.1016/j.carbpol.2021.118044.

    Article  CAS  Google Scholar 

  85. Hokkanen S, Repo E, Bhatnagar A, Tang WZ, Sillanpää M. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose. Environ Technol. 2014;35(17–20):2334–46. https://doi.org/10.1080/09593330.2014.903300.

    Article  CAS  Google Scholar 

  86. Calugaru IL, Neculita CM, Genty T, Zagury GJ. Removal and recovery of Ni and Zn from contaminated neutral drainage by thermally activated dolomite and hydrothermally activated wood ash. Wat Air and Soil Poll. 2020;231(5):226. https://doi.org/10.1007/s11270-020-04600-3.

    Article  CAS  Google Scholar 

  87. Calugaru IL, Neculita CM, Genty T, Bussière B, Potvin R. Removal of Ni and Zn in contaminated neutral drainage by raw and modified wood ash. J Environ Sci Health A. 2017;52(2):117–26. https://doi.org/10.1080/10934529.2016.1237120.

    Article  CAS  Google Scholar 

  88. Bandara T, Xu J, Potter ID, Franks A, Chathurika J, Tang C. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere. 2020;254:126745. https://doi.org/10.1016/j.chemosphere.2020.126745.

    Article  CAS  Google Scholar 

  89. Veselská V, Šillerová H, Hudcová B, Ratié G, Lacina P, Lalinská-Voleková B, et al. Innovative in situ remediation of mine waters using a layered double hydroxide-biochar composite. J Hazard Mater. 2022;424:127136. https://doi.org/10.1016/j.jhazmat.2021.127136.

    Article  CAS  Google Scholar 

  90. Genty T, Bussière B, Benzaazoua M, Zagury GJ. Capacity of wood ash filters to remove iron from acid mine drainage: assessment of retention mechanism. Mine Water Environ. 2012;31(4):273–86. https://doi.org/10.1007/s10230-012-0199-z.

    Article  CAS  Google Scholar 

  91. Richard D, Neculita CM, Zagury GJ. Removal of nickel from neutral mine drainage using peat-calcite, compost, and wood ash in column reactors. Environ Sci Pollut Res. 2021;28(12):14854–66. https://doi.org/10.1007/s11356-020-11623-0.

    Article  CAS  Google Scholar 

  92. Calugaru IL, Neculita CM, Genty T, Bussière B, Potvin R. Removal of Ni and Zn in contaminated neutral drainage by raw and modified wood ash. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017;52(2):117–26. https://doi.org/10.1080/10934529.2016.1237120.

    Article  CAS  Google Scholar 

  93. Hanyan Z. Evaluating the remediation potential of MgFe2O4-montmorillonite and its co-application with biochar on heavy metal-contaminated soils. Chemosphere. 2022;299:134217. https://doi.org/10.1016/j.chemosphere.2022.134217.

    Article  CAS  Google Scholar 

  94. DaryabeigiZand A, Grathwohl P. Enhanced immobilization of polycyclic aromatic hydrocarbons in contaminated soil using forest wood-derived biochar and activated carbon under saturated conditions, and the importance of biochar particle size. Pol J Environ Stud. 2016;25(1):427–41. https://doi.org/10.15244/pjoes/60160.

    Article  CAS  Google Scholar 

  95. Srinivasan P, Sarmah AK. Characterization of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ. 2015;502:471–80. https://doi.org/10.1016/j.scitotenv.2014.09.048.

    Article  CAS  Google Scholar 

  96. Moon DH, Hwang I, Chang Y-Y, Koutsospyros A, Cheong KH, Ji WH, et al. Quality improvement of acidic soils by biochar derived from renewable materials. Environ Sci Pollut Res. 2017;24(4):4194–9. https://doi.org/10.1007/s11356-016-8142-7.

    Article  CAS  Google Scholar 

  97. Liu Q, Liu B, Zhang Y, Lin Z, Zhu T, Sun R, et al. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biol Biochem. 2017;104:8–17. https://doi.org/10.1016/j.soilbio.2016.10.006.

    Article  CAS  Google Scholar 

  98. Chen C, Wang R, Shang J, Liu K, Irshad MK, Hu K, et al. Effect of biochar application on hydraulic properties of sandy soil under dry and wet conditions. Vadose Zone J. 2018;17(1):180101. https://doi.org/10.2136/vzj2018.05.0101.

    Article  CAS  Google Scholar 

  99. McDonald MR, Bakker C, Motior MR. Evaluation of wood biochar and compost soil amendment on cabbage yield and quality. Can J Plant Sci. 2019;99(5):624–38. https://doi.org/10.1139/cjps-2018-0122.

    Article  CAS  Google Scholar 

  100. Robert É, Braghiroli FL. Development of a biochar-based substrate added with nitrogen from a mining effluent for the production of picea mariana seedlings. Clean Technol. 2022. https://doi.org/10.3390/cleantechnol4030047.

    Article  Google Scholar 

  101. Asadyar L, Xu C-Y, Wallace HM, Xu Z, Reverchon F, Bai SH. Soil-plant nitrogen isotope composition and nitrogen cycling after biochar applications. Environ Sci Pollut Res. 2021;28(6):6684–90. https://doi.org/10.1007/s11356-020-11016-3.

    Article  CAS  Google Scholar 

  102. Bauli CR, Lima GF, de Souza AG, Ferreira RR, Rosa DS. Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids Surf A: Physicochem Eng Asp. 2021;623:126771. https://doi.org/10.1016/j.colsurfa.2021.126771.

    Article  CAS  Google Scholar 

  103. Pelletier C, Rogaume Y, Dieckhoff L, Bardeau G, Pons M-N, Dufour A. Effect of combustion technology and biogenic CO2 impact factor on global warming potential of wood-to-heat chains. Appl Energy. 2019;235:1381–8. https://doi.org/10.1016/j.apenergy.2018.11.060.

    Article  CAS  Google Scholar 

  104. Nanda S, Reddy SN, Mitra SK, Kozinski JA. The progressive routes for carbon capture and sequestration. Energy Sci Eng. 2016;4(2):99–122. https://doi.org/10.1002/ese3.117.

    Article  CAS  Google Scholar 

  105. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed. 2010;49(35):6058–82. https://doi.org/10.1002/anie.201000431.

    Article  CAS  Google Scholar 

  106. Igalavithana AD, Choi SW, Shang J, Hanif A, Dissanayake PD, Tsang DCW, et al. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: effect of porous structure and surface chemistry. Sci Total Environ. 2020;739:139845. https://doi.org/10.1016/j.scitotenv.2020.139845.

    Article  CAS  Google Scholar 

  107. Li K, Zhang D, Niu X, Guo H, Yu Y, Tang Z, et al. Insights into CO2 adsorption on KOH-activated biochars derived from the mixed sewage sludge and pine sawdust. Sci Total Environ. 2022;826:154133. https://doi.org/10.1016/j.scitotenv.2022.154133.

    Article  CAS  Google Scholar 

  108. Ben-Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, et al. Carbon capture by physical adsorption: materials, experimental investigations, and numerical modeling and simulations – a review. Appl Energy. 2016;161:225–55. https://doi.org/10.1016/j.apenergy.2015.10.011.

    Article  CAS  Google Scholar 

  109. Mulu E, M’Arimi MM, Ramkat RC, Mecha AC. Potential of wood ash in the purification of biogas. Energy Sustain Dev. 2021;65:45–52. https://doi.org/10.1016/j.esd.2021.09.009.

    Article  Google Scholar 

  110. Lombardi L, Costa G, Spagnuolo R. Accelerated carbonation of wood combustion ash for CO2 removal from gaseous streams and storage in solid form. Environ Sci Pollut Res. 2018;25(36):35855–65. https://doi.org/10.1007/s11356-018-2159-z.

    Article  CAS  Google Scholar 

  111. Wang P, Guo Y, Zhao C, Yan J, Lu P. Biomass derived wood ash with amine modification for post-combustion CO2 capture. Appl Energy. 2017;201:34–44. https://doi.org/10.1016/j.apenergy.2017.05.096.

    Article  CAS  Google Scholar 

  112. Sepahvand S, Jonoobi M, Ashori A, Gauvin F, Brouwers HJH, Oksman K, et al. A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydr Polym. 2020;230:115571. https://doi.org/10.1016/j.carbpol.2019.115571.

    Article  CAS  Google Scholar 

  113. Li Y, Lin Y, Xu Z, Wang B, Zhu T. Oxidation mechanisms of H2S by oxygen and oxygen-containing functional groups on activated carbon. Fuel Process Technol. 2019;189:110–9. https://doi.org/10.1016/j.fuproc.2019.03.006.

    Article  CAS  Google Scholar 

  114. Liu HW, Feng S, Leung AK. Effects of nano-activated carbon on water and gas permeability and hydrogen sulfide removal in compacted kaolin. Appl Clay Sci. 2019;172:80–4. https://doi.org/10.1016/j.clay.2019.02.012.

    Article  CAS  Google Scholar 

  115. Zhao Z, Wang B, Theng BKG, Lee X, Zhang X, Chen M, et al. Removal performance, mechanisms, and influencing factors of biochar for air pollutants: a critical review. Biochar. 2022;4(1):30. https://doi.org/10.1007/s42773-022-00156-z.

    Article  CAS  Google Scholar 

  116. Shang G, Li Q, Liu L, Chen P, Huang X. Adsorption of hydrogen sulfide by biochars derived from pyrolysis of different agricultural/forestry wastes. J Air Waste Manag Assoc. 2016;66(1):8–16. https://doi.org/10.1080/10962247.2015.1094429.

    Article  CAS  Google Scholar 

  117. Choudhury A, Lansing S. Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. J Environ Chem Eng. 2021;9(1):104837. https://doi.org/10.1016/j.jece.2020.104837.

    Article  CAS  Google Scholar 

  118. Zou W, Gao B, Ok YS, Dong L. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review. Chemosphere. 2019;218:845–59. https://doi.org/10.1016/j.chemosphere.2018.11.175.

    Article  CAS  Google Scholar 

  119. Shen Y, Zhang N. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption. Bioresour Technol. 2019;282:294–300. https://doi.org/10.1016/j.biortech.2019.03.025.

    Article  CAS  Google Scholar 

  120. Kaikiti K, Stylianou M, Agapiou A. Development of food-origin biochars for the adsorption of selected volatile organic compounds (VOCs) for environmental matrices. Bioresour Technol. 2021;342:125881. https://doi.org/10.1016/j.biortech.2021.125881.

    Article  CAS  Google Scholar 

  121. Zhang X, Gao B, Zheng Y, Hu X, Creamer AE, Annable MD, et al. Biochar for volatile organic compound (VOC) removal: sorption performance and governing mechanisms. Bioresour Technol. 2017;245:606–14. https://doi.org/10.1016/j.biortech.2017.09.025.

    Article  CAS  Google Scholar 

  122. Collivignarelli MC, Canato M, Abbà A, CarnevaleMiino M. Biosolids: what are the different types of reuse? J Clean Prod. 2019;238:117844. https://doi.org/10.1016/j.jclepro.2019.117844.

    Article  CAS  Google Scholar 

  123. Xu K, Lin F, Dou X, Zheng M, Tan W, Wang C. Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides. J Clean Prod. 2018;187:205–14. https://doi.org/10.1016/j.jclepro.2018.03.206.

    Article  CAS  Google Scholar 

  124. Godiya CB, Cheng X, Li D, Chen Z, Lu X. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater. 2019;364:28–38. https://doi.org/10.1016/j.jhazmat.2018.09.076.

    Article  CAS  Google Scholar 

  125. Karanac M, Đolić M, Veljović Đ, Rajaković-Ognjanović V, Veličković Z, Pavićević V, et al. The removal of Zn2+, Pb2+, and As(V) ions by lime-activated fly ash and valorization of the exhausted adsorbent. Waste Manage. 2018;78:366–78. https://doi.org/10.1016/j.wasman.2018.05.052.

    Article  CAS  Google Scholar 

  126. Haddad K, Jellali S, Jeguirim M, Trabelsi ABH, Limousy L. Investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust. J Environ Manag. 2018;216:305–14. https://doi.org/10.1016/j.jenvman.2017.06.020.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of Mitacs Elevate Proposal (IT28891) and the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Contributions

M.K. wrote the main manuscript text and F.B., C.M.N. and A.K. reviewed the manuscript.

Corresponding author

Correspondence to Flavia Lega Braghiroli.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshvardoostchokami, M., Braghiroli, F.L., Neculita, C.M. et al. Advances in Modified Wood-Based Adsorbents for Contaminant Removal: Valorization Methods, Modification Mechanisms, and Environmental Applications. Curr. For. Rep. 9, 444–460 (2023). https://doi.org/10.1007/s40725-023-00200-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-023-00200-6

Keywords

Navigation