Skip to main content

Advertisement

Log in

How Climate Shapes the Functioning of Tropical Montane Cloud Forests

  • Physiological Processes (M Mencuccini, Section Editors)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Tropical Montane Cloud Forest (TMCF) is a highly vulnerable ecosystem, which occurs at higher elevations in tropical mountains. Many aspects of TMCF vegetation functioning are poorly understood, making it difficult to quantify and project TMCF vulnerability to global change. We compile functional traits data to provide an overview of TMCF functional ecology. We use numerical models to understand the consequences of TMCF functional composition with respect to its responses to climate and link the traits of TMCF to its environmental conditions.

Recent Findings

TMCF leaves are small and have low SLA but high Rubisco content per leaf area. This implies that TMCF maximum net leaf carbon assimilation (An) is high but often limited by low temperature and leaf wetting. Cloud immersion provides important water and potentially nutrient inputs to TMCF plants. TMCF species possess low sapwood specific conductivity, which is compensated with a lower tree height and higher sapwood to leaf area ratio. These traits associated with a more conservative stomatal regulation results in a higher hydraulic safety margin than nearby forests not affected by clouds. The architecture of TMCF trees including its proportionally thicker trunks and large root systems increases tree mechanical stability.

Summary

The TMCF functional traits can be conceptually linked to its colder and cloudy environment limiting An, growth, water transport and nutrient availability. A hotter climate would drastically affect the abiotic filters shaping TMCF communities and potentially facilitate the invasion of TMCF by more productive lowland species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bubb P, May I, Miles L, Sayer J. Cloud forest agenda. Cambridge: UNEP-WCMC; 2004.

    Google Scholar 

  2. Gentry AH. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos. 1992;63:19–28.

    Google Scholar 

  3. • Bruijnzeel LA, Kappelle M, Mulligan M, Scatena FN. Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. Trop Mont Cloud For Sci Conserv Manag. 2011;691–740. This book chapter summarizes very well the advances in cloud forest hydrometeorology and biodiversity research up to 2011.

  4. Bruijnzeel L. Hydrology of tropical montane cloud forests: a reassessment. L Use Water Resour Res. 1993;1:1–18.

    Google Scholar 

  5. Martínez ML, Pérez-Maqueo O, Vázquez G, Castillo-Campos G, García-Franco J, Mehltreter K, et al. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For Ecol Manag. 2009;258:1856–63.

    Google Scholar 

  6. Stadtmüller T. Cloud forests in the humid tropics: a bibliographic review. CATIE: Turrialba; 1987.

    Google Scholar 

  7. Bruijnzeel LA, Proctor J. Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? 1995;38–78.

  8. Grubb PJ. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst. 1977.

  9. • Bertoncello R, Yamamoto K, Meireles LD, Shepherd GJ. A phytogeographic analysis of cloud forests and other forest subtypes amidst the Atlantic forests in south and Southeast Brazil. Biodivers Conserv. 2011;20:3413–33 This paper presents a floristic analysis on South/Southeast Brazil Cloud forests showing that they constitute a distinct phytogeographic formation from other Atlantic forest subtypes.

    Google Scholar 

  10. van de Weg MJ, Meir P, Grace J, Atkin OK. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecol Divers. 2009;2:243–54.

    Google Scholar 

  11. • Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, et al. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia. 2013;172:889–902 This paper presents the results of a large-scale experiment along an altitudinal transect in the Peruvian Andes. It shows higher altitude forests responded to N addition with increased stem diameter growth, but no changes in canopy structure and/or leaf stoichiometry.

    Google Scholar 

  12. Falkenberg D, Voltolini JC. The montane cloud forest in Southern Brazil. Trop Mont Cloud For. New York: Springer New York; 1995. p. 138–49.

    Google Scholar 

  13. Meireles LD, Shepherd GJ. Structure and floristic similarities of upper montane forests in Serra Fina mountain range, southeastern Brazil. Acta Bot Bras. 2015;29:58–72.

    Google Scholar 

  14. Merlin MD, Juvik JO. Montane cloud forest in the tropical pacific: some aspects of their floristics, biogeography, ecology, and conservation. Trop Mont cloud For. New York: Springer New York; 1995. p. 234–53.

    Google Scholar 

  15. Rzedowski J. Analsis preliminar de la flora vascular de los bosques mesofilos de montaña de Mexico. Acta Bot Mex. 1996;35:25–44.

    Google Scholar 

  16. Foster P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci Rev. 2001;55:73–106 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0012825201000563.

    Google Scholar 

  17. Leo M. The importance of tropical montane cloud forest for preserving vertebrate endemism in Peru: the Río Abiseo National Park as a case study. Trop Mont Cloud For. New York: Springer New York; 1995. p. 198–211.

    Google Scholar 

  18. Pounds JA, Fogden MPL, Campbell JH. Biological response to climate change on a tropical mountain. Nature. 1999;398:611–5.

    CAS  Google Scholar 

  19. Still CJ, Foster PN, Schneider SH. Simulating the effects of climate change on tropical montane cloud forests. Nature. 1999;398:608–10.

    CAS  Google Scholar 

  20. Lawton RO, Nair US, Pielke S, Welch RM. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science (80- ). 2001;294:584–7.

    CAS  Google Scholar 

  21. Goldsmith GR, Matzke NJ, Dawson TE. The incidence and implications of clouds for cloud forest plant water relations. Ecol Lett. 2013;16:307–14.

    Google Scholar 

  22. • Oliveira RS, Eller CB, Bittencourt PRL, Mulligan M. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann Bot. 2014;113:909–20 This review paper focuses on the interactions between fog and cloud forest vegetation, especially on the process of direct foliar water uptake and its implications for the vegetation responses to climate change. Besides the ecophysiological framework proposed in the paper, it presents model projections for future cloud forest climate.

    Google Scholar 

  23. Gotsch SG, Nadkarni N, Darby A, Glunk A, Dix M, Davidson K, et al. Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecol Monogr. 2015;85:393–412.

    Google Scholar 

  24. Eller CB, Lima AL, Oliveira RS. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 2016;211:489–501.

    CAS  Google Scholar 

  25. Eller CB, Lima AL, Oliveira RS. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol. 2013;199:151–62.

    CAS  Google Scholar 

  26. Eller CB, Burgess SSO, Oliveira RS. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree Physiol. 2015;35:387–99.

    Google Scholar 

  27. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015;424–30.

  28. Mcgill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. 2006;21.

  29. Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob Chang Biol. 2008;14:2015–39.

    Google Scholar 

  30. Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol. 2004;78:137–56.

    Google Scholar 

  31. Bruijnzeel L, Veneklaas E. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology. 1998;79:3–9.

    Google Scholar 

  32. Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, et al. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 2017;40:816–30.

    CAS  Google Scholar 

  33. Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros FV, da Costa ACL, et al. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373:20170315.

    Google Scholar 

  34. Suhs RB, Hoeltgebaum MP, Nuernberg-Silva A, Fiaschi P, Neckel-Oliveira S, Peroni N. Species diversity, community structure and ecological traits of trees in an upper montane forest, southern Brazil. Acta Bot Bras. 2019;33:153–62.

    Google Scholar 

  35. Koehler A, Galvão F, Longhi SJ. Floresta Ombrófila Densa Altomontana: aspectos florísticos e estruturais de diferentes trechos na Serra do Mar, PR. Ciênc Florest. 2005;12:27.

    Google Scholar 

  36. Valente ASM, Garcia PO, Salimena FRG, De Oliveira-Filho AT. Composição, estrutura e similaridade florística da Floresta Atlântica, na Serra Negra, Rio Preto - MG. Rodriguesia. 2011;62:321–40.

    Google Scholar 

  37. Costa M d P, Pereira JAA, Fontes MAL, de Melo PHA, Pífano DS, Pellicciottii AS, et al. Estrutura e diversidade da comunidade arbórea de uma floresta superomontana, no planalto de Poços de Caldas (MG). Cienc Florest. 2011;21:711–25.

    Google Scholar 

  38. Colonetti S, Citadini-Zanette V, Martins R, dos Santos R, Rocha E, Jarenkow JA. Florística e estrutura fitossociológica em floresta ombrófila densa submontana na barragem do rio São Bento, Siderópolis, Estado de Santa Catarina. Acta Sci - Biol Sci. 2009;31:397–405.

    Google Scholar 

  39. da Silva FC. Composiçäo florística e estrutura fitossociológica da floresta tropical ombrófila da encosta Atlântica no município de Morretes, Estado do Paraná. Acta Biol Parana. 1994;23:1–54.

    Google Scholar 

  40. Guilherme FAG, Morellato LPC, Assis MA. Horizontal and vertical tree community structure in a lowland Atlantic rain forest, southeastern Brazil. Rev Bras Bot. 2004;27:725–37.

    Google Scholar 

  41. Dias AC, do Couto HTZ. Comparação De Métodos De Amostragem Na Floresta Ombrófila Densa – Parque Estadual Carlos Botelho/Sp–Brasil. Rev Inst Flor, São Paulo. 2005.

  42. Rochelle ALC, Cielo-Filho R, Martins FR. Tree community structure in an Atlantic forest fragment at Serra do Mar State Park, southeastern Brazil. Biota Neotrop. 2011;11:337–46.

    Google Scholar 

  43. Carvalho WAC, Filho ARYTO, Fontes MAL. Variação espacial da estrutura da comunidade arbórea de um fragmento de floresta semidecídua em Piedade do Rio Grande, MG, Brasil. 2007;315–35.

  44. Prata EMB, Assis MA, Joly CA. Floristic composition and structure of tree community on the transition lowland - Lowermontane Ombrophilous dense Forest in N?Cleo Picinguaba/Serra do Mar State Park, Ubatuba, southeastern Brazil. Biota Neotrop. 2011;11:285–99.

    Google Scholar 

  45. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, et al. Global convergence in the vulnerability of forests to drought. Nature. 2012;491:752–5.

    CAS  Google Scholar 

  46. Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY - a global database of plant traits. Glob Chang Biol. 2011;17:2905–35.

    Google Scholar 

  47. Borcard D, Legendre P, Gillet F. Numerical ecology with R: use R! Springer.. 2011.

  48. Reich PB. The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J Ecol. 2014;102:275–301.

    Google Scholar 

  49. Buckley RC, Corlett RT, Grubb PJ. Are the xeromorphic trees of tropical upper montane rain forests drought- resistant? Biotropica. 1980;12:124–36.

    Google Scholar 

  50. • Jarvis A, Mulligan M. The climate of cloud forests. Array, editor. Hydrol process. John Wiley & Sons, Ltd.; 2011 [cited 2013 Jan 27];25:327–43. Available from: http://doi.wiley.com/10.1002/hyp.7847. This paper provides a very useful description of the climate of cloud forest throughout the planet. Showing that cloud forests are significantly colder and more humid than other montane forests not affected by clouds.

  51. Gale J. Elevation and transpiration: some theoretical considerations with special reference to Mediterranean-type climate. J Appl Ecol. 1972;9:691–702.

    Google Scholar 

  52. Smith WK, Geller GN. Plant transpiration at high elevations: theory, field measurements, and comparisons with desert plants. Oecologia. 1979;41:109–22.

    CAS  Google Scholar 

  53. Leuschner C. Are high elevations in Tropical Mountains arid environments for plants? Ecology. 2000;81:1425–36.

    Google Scholar 

  54. Tanner EVJ, Vltousek PM, Cuevas E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology. 1998;79:10–22.

    Google Scholar 

  55. Kitayama K, Aiba SI. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol. 2002;90:37–51.

    Google Scholar 

  56. Soethe N, Lehmann J, Engels C. Nutrient availability at different altitudes in a tropical montane forest in Ecuador. J Trop Ecol. 2008;24:397–406.

    Google Scholar 

  57. Weaver PL, Medina E, Pool D, Dugger K, Gonzales-Liboy J, Cuevas E. Ecological observations in the dwarf cloud forest of the Luquillo Mountains in Puerto Rico. Biotropica. 1986;18:79–85.

    Google Scholar 

  58. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. 2004;12:821–7.

  59. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. Causes and consequences of variation in leaf mass per area (LMA ): a meta-analysis. 2009;565–88.

  60. Grieve B. Negative turgor pressures in sclerophyll plants. Aust J Sci. 1961;23:375–7.

    Google Scholar 

  61. Zhu SD, Chen YJ, Ye Q, He PC, Liu H, Li RH, et al. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiol. 2018;38:658–63.

    Google Scholar 

  62. Maréchaux I, Bartlett MK, Sack L, Baraloto C, Engel J, Joetzjer E, et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct Ecol. 2015;29:1268–77.

    Google Scholar 

  63. Yamori W, Hikosaka K, Way DA. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res. 2014;119:101–17.

    CAS  Google Scholar 

  64. Letts MG, Mulligan M. The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. J Trop Ecol. 2005;21:549–57.

    Google Scholar 

  65. van de Weg MJ, Meir P, Grace J, Ramos GD. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia. 2012;168:23–34.

    Google Scholar 

  66. Wittich B, Horna V, Homeier J, Leuschner C. Altitudinal change in the photosynthetic capacity of tropical trees: a case study from Ecuador and a pantropical literature analysis. Ecosystems. 2012;15:958–73.

    CAS  Google Scholar 

  67. Güsewell S. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 2004;164:243–66.

    Google Scholar 

  68. Aerts R, Chapin FS. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res. 1999;30:1–67.

    Google Scholar 

  69. Gerrish G, Mueller-Dombois D, Bridges KW. Nutrient limitation and Metrosideros forest dieback in Hawaii. Ecology. 1988;69:723–7.

    Google Scholar 

  70. Raich JW, Russell AE, Crews TE, Farrington H, Vitousek PM. Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. Biogeochemistry. 1996;32:1–14.

    Google Scholar 

  71. • Fahey TJ, Sherman RE, Tanner EVJ. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J Trop Ecol. 2016;32:355–67 This review explores how environmental conditions in cloud forests might cause its particular morphology and low productivity. The authors propose cloud immersion as the main driver of soil nutrient limitation and vegetation functioning.

    Google Scholar 

  72. Güsewell S, Koerselman W. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol Evol Syst. 2002;5:37–61.

    Google Scholar 

  73. Gotsch SG, Crausbay SD, Giambelluca TW, Weintraub AE, Longman RJ, Asbjornsen H, et al. Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai’i. Tree Physiol. 2014;34:766–77.

    Google Scholar 

  74. Berry ZC, White JC, Smith WK. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest. Tree Physiol. 2014;34:459–70.

    CAS  Google Scholar 

  75. Burkhardt J, Basi S, Pariyar S, Hunsche M. Stomatal penetration by aqueous solutions - an update involving leaf surface particles. New Phytol. 2012;196:774–87.

    CAS  Google Scholar 

  76. Boanares D, Isaias RRMS, de Sousa HC, Kozovits AR. Strategies of leaf water uptake based on anatomical traits. Plant Biol. 2018;20:848–56.

    CAS  Google Scholar 

  77. Benzing DH, Burt KM. Foliar permeability among twenty species of the Bromeliaceae. Bull Torrey Bot Club. 1970;97:269.

    Google Scholar 

  78. Berry ZC, Emery NC, Gotsch SG, Goldsmith GR. Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant Cell Environ. 2019;42:410–23.

    CAS  Google Scholar 

  79. Binks O, Mencuccini M, Rowland L, da Costa ACL, de Carvalho CJR, Bittencourt P, et al. Foliar water uptake in Amazonian trees: evidence and consequences. Glob Chang Biol. 2019;25:2678–90.

    Google Scholar 

  80. Dawson TE, Goldsmith GR. The value of wet leaves. New Phytol. 2018;219:1156–69.

    Google Scholar 

  81. Arriaga L. Types and causes of tree mortality in a tropical montane cloud forest of Tamaulipas, Mexico. J Trop Ecol. 2000;16:623–36.

    Google Scholar 

  82. Soethe N, Lehmann J, Engels C. Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador. Plant Soil. 2006;279:173–85.

    CAS  Google Scholar 

  83. Werner WL. Canopy dieback in the upper montane rain forests of Sri Lanka. GeoJournal. 1988;17:245–8.

    Google Scholar 

  84. Lowry JB, Lee DW. Stone. BC. Effects of drought on Mount Kinabalu. Malay Nat J. 1973;26:178–1799.

    Google Scholar 

  85. Hutley LB, Doley D, Yates DJ, Boonsaner A. Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog. Aust J Bot. 1997;45:311–29.

    Google Scholar 

  86. Cavelier J, Goldstein G. Mist and fog interception in elfin cloud forests in Colombia and Venezuela. J Trop Ecol. 1989;5:309–22.

    Google Scholar 

  87. Holder CD. Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. For Ecol Manag. 2004;190:373–84.

    Google Scholar 

  88. Benzing DH. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim Chang. 1998;519–40.

  89. Adriaenssens S, Staelens J, Wuyts K, De Schrijver A, Van Wittenberghe S, Wuytack T, et al. Foliar nitrogen uptake from wet deposition and the relation with leaf wettability and water storage capacity. Water Air Soil Pollut. 2011;219:43–57.

    Google Scholar 

  90. Weathers KC, Lovett GM, Likens GE, Caraco NFM. Cloudwater inputs of nitrogen to forest ecosystem in southern Chile: forms, fluxes, and sources. Ecosystems. 2000;3:590–5.

    CAS  Google Scholar 

  91. Matson AL, Corre MD, Burneo JI, Veldkamp E. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry. 2015;122:281–94.

    CAS  Google Scholar 

  92. Benner JW, Conroy S, Lunch CK, Toyoda N, Vitousek PM. Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica. 2007;39:400–5.

    Google Scholar 

  93. Mencuccini M, Manzoni S, Christoffersen B. Modelling water fluxes in plants: from tissues to biosphere. New Phytol. 2019;222:1207–22.

    Google Scholar 

  94. Brodribb TJ, Cochard H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 2009;149:575–84.

    CAS  Google Scholar 

  95. Maherali H, Pockman WT, Jackson RB. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology. 2004;85:2184–99.

    Google Scholar 

  96. Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 2019;221:1457–65.

    Google Scholar 

  97. Harper AB, Cox PM, Friedlingstein P, Wiltshire AJ, Jones CD, Sitch S, et al. Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geosci Model Dev. 2016;9:2415–40.

    Google Scholar 

  98. Kattge J, Knorr W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ. 2007;30:1176–90.

    CAS  Google Scholar 

  99. Collatz GJ, Ball JT, Grivet C, Berry JA. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol. 1991;54:107–36.

    Google Scholar 

  100. Eller CB, Barros F d V, Bittencourt PRL, Rowland L, Mencuccini M, Oliveira RS. Xylem hydraulic safety and construction costs determine tropical tree growth. Plant Cell Environ. 2018;41:548–62.

    CAS  Google Scholar 

  101. Hacke UG, Sperry JS, Feild TS, Sano Y, Sikkema EH, Pittermann J. Water transport in vesselless angiosperms: conducting efficiency and cavitation safety. Int J Plant Sci. 2007;168:1113–26.

    Google Scholar 

  102. Sperry JS, Hacke UG, Feild TS, Sano Y, Sikkema EH. Hydraulic consequences of vessel evolution in angiosperms. Int J Plant Sci. 2007;168:1127–39.

    Google Scholar 

  103. Christoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR, Baker TR, et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-hydro). Geosci Model Dev. 2016;9:4227–55.

    Google Scholar 

  104. Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol. 2009;23:922–30.

    Google Scholar 

  105. Zotz G, Tyree MT, Patiño S, Carlton MR. Hydraulic architecture and water use of selected species from a lower montane forest in Panama. Trees - Struct Funct. 1998;12:302–9.

    Google Scholar 

  106. Feild TS, Holbrook NM. Xylem sap flow and stem hydraulics of the vesselles angiosperm Drimys granadensis (Winteraceae) in a Costa Rican elfin forest. Plant Cell Environ. 2000;23:1067–77.

    Google Scholar 

  107. Sperry JS, Hacke UG, Pittermann J. Size and function in conifer tracheids and angiosperm vessels. Am J Bot. 2006;93:1490–500.

    Google Scholar 

  108. Davis SD, Sperry JS, Hacke UG. The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot. 1999;86:1367–72.

    CAS  Google Scholar 

  109. Rehm EM, Feeley KJ, Meinzer FC. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines. Ecology. 2015;96:1856–65.

    Google Scholar 

  110. Santiago LS, Jones TJ, Goldstein G. Physiological variation in Hawaiian Metrosideros polymorpha across a range of habitats: from dry forests to cloud forests. Trop Mont Cloud For Sci Conserv Manag. 2011;456–64.

  111. McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, et al. The relationship between tree height and leaf area: sapwood area ratio. Oecologia. 2002;132:12–20.

    CAS  Google Scholar 

  112. Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. Bioscience. 2006;47:235–42.

    Google Scholar 

  113. Jaffe MJ. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta. 1973;114:143–57.

    CAS  Google Scholar 

  114. Lawton RO. Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. Am J Bot. 1982;69:1224–30.

    Google Scholar 

  115. Lawton RO. Ecological constraints on wood density in a tropical montane rain forest. Am J Bot. 1984;71:261–7.

    Google Scholar 

  116. King DA, Aug N. Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology. 1986;67:980–90.

    Google Scholar 

  117. Curran TJ, Gersbach LN, Edwards W, Krockenberger AK. Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia. Austral Ecol. 2008;33:442–50.

    Google Scholar 

  118. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Hans Steege TER, Webb CO. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl. 2006;16:2356–67.

    Google Scholar 

  119. Cavender-Bares J. Impacts of freezing on long distance transport in woody plants. Vasc Transp Plants. 2005;401–24.

  120. Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol. 2007;8:219–30.

    Google Scholar 

  121. Girardin CAJ, Malhi Y, Aragão LEOC, Mamani M, Huaraca Huasco W, Durand L, et al. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Chang Biol. 2010;16:3176–92.

    Google Scholar 

  122. Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol. 2011.

  123. Bloom AJ, Chapin FS, Mooney HA. Resource limitation in plants-an economic analogy. Annu Rev Ecol Syst. 1985;16:363–92.

    Google Scholar 

  124. Ericsson T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil. 1995;168–169:205–14.

    Google Scholar 

  125. Girardin CAJ, Aragão LEOC, Malhi Y, Huaraca Huasco W, Metcalfe DB, Durand L, et al. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Glob Biogeochem Cycles. 2013;27:252–64.

    CAS  Google Scholar 

  126. Metcalfe DB, Meir P, Aragão LEOC, Da Costa ACL, Braga AP, Gonçalves PHL, et al. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil. 2008;311:189–99.

    CAS  Google Scholar 

  127. Clark LJ, Whalley WR, Barraclough PB. How do roots penetrate strong soil? Plant Soil. 2003;255:93–104.

    CAS  Google Scholar 

  128. Huber DPW, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J. Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiol. 2005;25:1075–83.

    CAS  Google Scholar 

  129. Engels C, Marschner H. Effect of sub-optimal root zone temperatures at varied nutrient supply and shoot meristem temperature on growth and nutrient concentrations in maize seedlings (Zea mays L.). Plant Soil. 1990;126:215–25.

    CAS  Google Scholar 

  130. Bigot J, Boucaud J. Short-term responses of Brassica rapa plants to low root temperature: effects on nitrate uptake and its translocation to the shoot. Physiol Plant. 1996;96:646–54.

    CAS  Google Scholar 

  131. Köhler L, Tobón C, Frumau KFA, Bruijnzeel LA. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecol. 2007;193:171–84.

    Google Scholar 

  132. Hofstede RGM, Wolf JHD. Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Biomasa de epífitas y estado nutricional de un bosque lluvioso colombiano de altura. Selbyana. 1993;14:37–45.

    Google Scholar 

  133. Kattge J, Knorr W, Raddatz T, Wirth C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Chang Biol. 2009;15:976–91.

    Google Scholar 

  134. Carswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B, Barbosa EM, et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol. 2000;20:179–86 Available from: https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/20.3.179.

    Google Scholar 

  135. Domingues TF, Martinelli LA, Ehleringer JR. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecol. 2007;193:101–12.

    Google Scholar 

  136. Coste S, Roggy JC, Imbert P, Born C, Bonal D, Dreyer E. Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance. Tree Physiol. 2005;25:1127–37.

    CAS  Google Scholar 

  137. Bittencourt PRL, Barros F d V, Eller CB, Müller CS, Oliveira RS. The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate. Agric For Meteorol. 2019;265:359–69.

    Google Scholar 

  138. Smith WK, McClean TM. Adaptive relationship between leaf water repellency, stomatal distribution, and gas exchange. Am J Bot. 2006;76:465–9.

    Google Scholar 

  139. Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, et al. The Joint UK Land Environment Simulator (JULES), model description – part 2: carbon fluxes and vegetation. Geosci Model Dev Discuss. 2011;4:641–88 Available from: http://www.geosci-model-dev-discuss.net/4/641/2011/.

    Google Scholar 

  140. Mercado LM, Medlyn BE, Huntingford C, Oliver RJ, Clark DB, Sitch S, et al. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytol. 2018;218:1462–77.

    CAS  Google Scholar 

  141. Adams WW, Cohu CM, Muller O, Demmig-Adams B. Foliar phloem infrastructure in support of photosynthesis. Front Plant Sci. 2013;4.

  142. Wardlaw IF, Bagnall D. Phloem transport and the regulation of growth of Sorghum bicolor (Moench) at low temperature. Plant Physiol. 1981;68:411–4.

    CAS  Google Scholar 

  143. Körner C. Paradigm shift in plant growth control. Curr Opin Plant Biol. 2015;25:107–14.

    Google Scholar 

  144. Jane GT, Green TGA. Patterns of Stomatal conductance in six Evergreen tree species from a New Zealand cloud forest. Bot Gaz. 1986;146:413–20.

    Google Scholar 

  145. Cavelier J. Tissue water relations in elfin cloud forest tree species of Serrania de Macuira, Guajira, Colombia. Trees. 1990;4:155–63.

    Google Scholar 

  146. Rosado BHP, Joly CA, Burgess SSO, Oliveira RS, Aidar MPM. Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees - Struct Funct. 2016;30:47–61.

    Google Scholar 

  147. Rada F, García-Núñez C, Ataroff M. Leaf gas exchange in canopy species of a Venezuelan cloud Forest. Biotropica. 2009;41:659–64.

    Google Scholar 

  148. Feild TS, Zwieniecki MA, Donoghue MJ, Holbrook NM. Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. Proc Natl Acad Sci. 2002;95:14256–9.

    Google Scholar 

  149. Diaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale. J Veg Sci. 1998;9:113–22 Available from: http://doi.wiley.com/10.2307/3237229.

    Google Scholar 

  150. Spracklen DV, Righelato R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences. 2014;11:2741–54.

    CAS  Google Scholar 

  151. Salinas N, Malhi Y, Meir P, Silman M, Roman Cuesta R, Huaman J, et al. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol. 2011;189:967–77.

    CAS  Google Scholar 

  152. Toome M, Heinsoo K, Luik A. Relation between leaf rust (Melampsora epitea) severity and the specific leaf area in short rotation coppice willows. Eur J Plant Pathol. 2010;126:583–8.

    Google Scholar 

  153. Poorter L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol. 2009.

  154. De Kauwe MG, Medlyn BE, Pitman AJ, Drake JE, Ukkola A, Griebel A, et al. Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes. Biogeosciences. 2019;16:903–16.

    Google Scholar 

  155. Cordero RA. Ecophysiology of Cecropia schreberiana saplings in two wind regimes in an elfin cloud forest: growth, gas exchange, architecture and stem biomechanics. Tree Physiol. 1999;19:153–63.

    Google Scholar 

  156. Gardiner B, Berry P, Moulia B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016;94–118.

  157. Van Gelder HA, Poorter L, Sterck FJ. Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol. 2006;171:367–78.

    Google Scholar 

  158. Hildebrandt A, Eltahir EAB. Ecohydrology of a seasonal cloud forest in Dhofar: 2. Role of clouds, soil type, and rooting depth in tree-grass competition. Water Resour Res. 2007;43.

  159. Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol. 2015;29:592–9.

    Google Scholar 

Download references

Funding

This research was supported by the Newton Fund through the Met Office Climate Science for Service Partnership Brazil (CSSP Brazil), the NERC grant NE/R00532X/1 and FAPESP grant 11/52072-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleiton B. Eller.

Ethics declarations

Conflict of Interest

Cleiton B Eller, Leonardo D Meireles, Stephen SO Burgess, Stephen Sitch, Rafael S Oliveira declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Physiological Processes

Electronic Supplementary Material

ESM 1

(DOCX 3676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eller, C.B., Meireles, L.D., Sitch, S. et al. How Climate Shapes the Functioning of Tropical Montane Cloud Forests. Curr Forestry Rep 6, 97–114 (2020). https://doi.org/10.1007/s40725-020-00115-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-020-00115-6

Keywords

Navigation