Skip to main content
Log in

Effective forms of the Sato–Tate conjecture

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

We prove effective forms of the Sato–Tate conjecture for holomorphic cuspidal newforms which improve on the author’s previous work (solo and joint with Lemke Oliver). We also prove an effective form of the joint Sato–Tate distribution for two twist-inequivalent newforms. Our results are unconditional because of recent work of Newton and Thorne.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baier, S., Prabhu, N.: Moments of the error term in the Sato–Tate law for elliptic curves. J. Number Theory 194, 44–82 (2019)

    Article  MathSciNet  Google Scholar 

  2. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi–Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29–98 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bucur, A., Kedlaya, K.S.: An application of the effective Sato–Tate conjecture. In: Frobenius Distributions: Lang–Trotter and Sato–Tate Conjectures. Contemporary Mathematics, vol. 663, pp. 45–56. American Mathematical Society, Providence (2016)

  4. Bushnell, C.J., Henniart, G.: An upper bound on conductors for pairs. J. Number Theory 65(2), 183–196 (1997)

    Article  MathSciNet  Google Scholar 

  5. Chen, E., Park, P.S., Swaminathan, A.A.: Elliptic curve variants of the least quadratic nonresidue problem and Linnik’s theorem. Int. J. Number Theory 14(1), 255–288 (2018)

    Article  MathSciNet  Google Scholar 

  6. Clozel, L., Thorne, J.A.: Level-raising and symmetric power functoriality. III. Duke Math. J. 166(2), 325–402 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cochrane, T.: Trigonometric approximation and uniform distribution modulo one. Proc. Am. Math. Soc. 103(3), 695–702 (1988)

    Article  MathSciNet  Google Scholar 

  8. Cogdell, J., Michel, P.: On the complex moments of symmetric power \(L\)-functions at \(s=1\). Int. Math. Res. Not. 31, 1561–1617 (2004)

    Article  MathSciNet  Google Scholar 

  9. David, C., Gafni, A., Malik, A., Prabhu, N., Turnage-Butterbaugh, C.L.: Extremal primes for elliptic curves without complex multiplication. Proc. Am. Math. Soc. 148(3), 929–943 (2020)

    Article  MathSciNet  Google Scholar 

  10. Gelbart, S., Jacquet, H.: A relation between automorphic representations of \({\rm GL}(2)\) and \({\rm GL}(3)\). Ann. Sci. École Norm. Sup. (4) 11(4), 471–542 (1978)

    Article  MathSciNet  Google Scholar 

  11. Harris, M.: Potential automorphy of odd-dimensional symmetric powers of elliptic curves and applications. In: Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Vol. II. Progress in Mathematics, vol. 270, pp. 1–21. Birkhäuser Boston, Inc., Boston (2009)

  12. Humphries, P., Brumley, F.: Standard zero-free regions for Rankin–Selberg \(L\)-functions via sieve theory. Math. Z. 292(3–4), 1105–1122 (2019)

    Article  MathSciNet  Google Scholar 

  13. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  14. Kim, H.H.: Functoriality for the exterior square of \({\rm GL}_4\) and the symmetric fourth of \({\rm GL}_2\). J. Am. Math. Soc. 16(1), 139–183 (2003). With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak

    Article  Google Scholar 

  15. Kim, H.H., Shahidi, F.: Functorial products for \({\rm GL}_2\times {\rm GL}_3\) and the symmetric cube for \({\rm GL}_2\). Ann. Math. (2) 155(3), 837–893 (2002). With an appendix by Colin J. Bushnell and Guy Henniart

    Article  MathSciNet  Google Scholar 

  16. Klurman, O., Mangerel, A.: Monotone chains of Fourier coefficients of Hecke cusp forms. arXiv e-prints, Sept. 2020. arXiv:2009.03225

  17. Lapid, E.: On the Harish–Chandra Schwartz space of \(G(F){\backslash }G(\mathbb{A})\). In: Automorphic Representations and \(L\)-functions. Tata Institute of Fundamental Research Studies in Mathematics, vol. 22, pp. 335–377. Tata Institute of Fundamental Research, Mumbai (2013). With an appendix by Farrell Brumley

  18. Lemke Oliver, R.J., Thorner, J.: Effective log-free zero density estimates for automorphic \(L\)-functions and the Sato–Tate conjecture. Int. Math. Res. Not. IMRN 22, 6988–7036 (2019)

    Article  MathSciNet  Google Scholar 

  19. Linnik, U.V.: On the least prime in an arithmetic progression. Rec. Math. [Mat. Sbornik] N.S. 15(57), 139–178, 347–368 (1944)

  20. Luca, F., Radziwiłł, M., Shparlinski, I.E.: On the typical size and cancellations among the coefficients of some modular forms. Math. Proc. Camb. Philos. Soc. 166(1), 173–189 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mazur, B.: Finding meaning in error terms. Bull. Am. Math. Soc. (N.S.) 45(2), 185–228 (2008)

    Article  MathSciNet  Google Scholar 

  22. Molteni, G.: Upper and lower bounds at \(s=1\) for certain Dirichlet series with Euler product. Duke Math. J. 111(1), 133–158 (2002)

    Article  MathSciNet  Google Scholar 

  23. Montgomery, H.L.: Ten lectures on the interface between analytic number theory and harmonic analysis. In: CBMS Regional Conference Series in Mathematics, vol. 84. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (1994)

  24. Moreno, C.J., Shahidi, F.: The \(L\)-functions \(L(s,{\rm Sym}^m(r),\pi )\). Can. Math. Bull. 28(4), 405–410 (1985)

    Article  Google Scholar 

  25. Newton, J., Thorne, J.A.: Symmetric power functoriality for holomorphic modular forms. arXiv e-prints, Dec. 2019. arXiv:1912.11261

  26. Newton, J., Thorne, J.A.: Symmetric power functoriality for holomorphic modular forms, II. arXiv e-prints, Sept. 2020. arXiv:2009.07180

  27. Ono, K.: The web of modularity: arithmetic of the coefficients of modular forms and \(q\)-series. In: CBMS Regional Conference Series in Mathematics, vol. 102. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (2004)

  28. Rouse, J.: Atkin–Serre type conjectures for automorphic representations on \({\rm GL}(2)\). Math. Res. Lett. 14(2), 189–204 (2007)

    Article  MathSciNet  Google Scholar 

  29. Rouse, J., Thorner, J.: The explicit Sato–Tate conjecture and densities pertaining to Lehmer-type questions. Trans. Am. Math. Soc. 369(5), 3575–3604 (2017)

    Article  MathSciNet  Google Scholar 

  30. Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Publ. Math. l’IHÉS 54, 123–201 (1981)

    Article  Google Scholar 

  31. Serre, J.-P.: Abelian \(l\)-adic Representations and Elliptic Curves. Research Notes in Mathematics, vol. 7. A K Peters, Ltd., Wellesley (1998). With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original

    MATH  Google Scholar 

  32. Soundararajan, K., Thorner, J.: Weak subconvexity without a Ramanujan hypothesis. Duke Math. J. 168, 1231–1268 (2019). With an appendix by Farrell Brumley

    Article  MathSciNet  Google Scholar 

  33. Thorner, J.: The error term in the Sato–Tate conjecture. Arch. Math. (Basel) 103(2), 147–156 (2014)

    Article  MathSciNet  Google Scholar 

  34. Thorner, J., Zaman, A.: A Chebotarev variant of the Brun–Titchmarsh theorem and bounds for the Lang–Trotter conjectures. Int. Math. Res. Not. IMRN 16, 4991–5027 (2018)

    Article  MathSciNet  Google Scholar 

  35. Thorner, J., Zaman, A.: A unified and improved Chebotarev density theorem. Algebra Number Theory 13(5), 1039–1068 (2019)

    Article  MathSciNet  Google Scholar 

  36. Wong, P.-J.: On the Chebotarev–Sato–Tate phenomenon. J. Number Theory 196, 272–290 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Maksym Radziwiłł, Jeremy Rouse, Jack Thorne, John Voight, and Peng-Jie Wong for helpful discussions and the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Thorner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorner, J. Effective forms of the Sato–Tate conjecture. Res Math Sci 8, 4 (2021). https://doi.org/10.1007/s40687-020-00234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-020-00234-3

Navigation