Skip to main content
Log in

Quasisymmetric functions and the Chow ring of the stack of expanded pairs

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

We show that the Hopf algebra of quasisymmetric functions arises naturally as the integral Chow ring of the algebraic stack of expanded pairs originally described by J. Li, using a more combinatorial description in terms of configurations of line bundles. In particular, we exhibit a gluing map which gives rise to the comultiplication. We then apply the result to calculate the Chow rings of certain stacks of semistable curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. I.e., isomorphic to a polynomial algebra.

  2. All \(M_I\) for \(\ell (I) > \vert \mathfrak {I}\vert \) are identically 0.

  3. To see how an integral basis can be constructed with the same index set, see [9], or [7, 6.5] for a more detailed explanation.

  4. The proof given in [4] is for schemes, but will work unchanged for stacks as a base if the vector bundle is trivial.

  5. In the topological setting, we have \(BU(1) = {{\mathbb {C}}}{{\mathbb {P}}}^\infty \). In this spirit, one could regard \(B{{\mathbb {G}}}_m\) as an algebraic version of \({{\mathbb {P}}}^\infty \).

  6. Except over the empty set.

  7. The symbol “nr” stands for “non-rigid.”

References

  1. Abramovich, D., Cadman, C., Fantechi, B., Wise, J.: Expanded degenerations and pairs. Commun. Algebra 41(6), 2346–2386 (2013). https://doi.org/10.1080/00927872.2012.658589

    Article  MathSciNet  MATH  Google Scholar 

  2. Borne, N., Vistoli, A.: Parabolic sheaves on logarithmic schemes. Adv. Math. 231(3–4), 1327–1363 (2012). https://doi.org/10.1016/j.aim.2012.06.015

    Article  MathSciNet  MATH  Google Scholar 

  3. Fulghesu, D.: The Chow ring of the stack of rational curves with at most 3 nodes. Commun. Algebra 38(9), 3125–3136 (2010). https://doi.org/10.1080/00927870903399893

    Article  MathSciNet  MATH  Google Scholar 

  4. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, 2nd edn. Springer, Berlin (1998). https://doi.org/10.1007/978-1-4612-1700-8

    Book  Google Scholar 

  5. Gessel, I.M.: Multipartite \(P\)-partitions and inner products of skew Schur functions. In: Combinatorics and Algebra (Boulder, Colo., 1983), Contemp. Math., 34, 289–317., Amer. Math. Soc., Providence, RI (1984). https://doi.org/10.1090/conm/034/777705

  6. Graber, T., Vakil, R.: Relative virtual localization and vanishing of tautological classes on moduli spaces of curves. Duke Math. J. 130(1), 1–37 (2005). https://doi.org/10.1215/S0012-7094-05-13011-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Grinberg, D., Reiner, V.: Hopf algebras in combinatorics (2018). arXiv:1409.8356

  8. Hazewinkel, M.: The algebra of quasi-symmetric functions is free over the integers. Adv. Math. 164(2), 283–300 (2001). https://doi.org/10.1006/aima.2001.2017

    Article  MathSciNet  MATH  Google Scholar 

  9. Hazewinkel, M.: Explicit polynomial generators for the ring of quasisymmetric functions over the integers. Acta Appl. Math. 109(1), 39–44 (2010). https://doi.org/10.1007/s10440-009-9439-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Jia, W., Wang, Z., Yu, H.: Rigidity for the hopf algebra of quasi-symmetric functions (2017). arXiv:1712.06499

  11. Kresch, A.: Cycle groups for Artin stacks. Invent. Math. 138(3), 495–536 (1999). https://doi.org/10.1007/s002220050351

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J.: Stable morphisms to singular schemes and relative stable morphisms. J. Differ. Geom. 57(3), 509–578 (2001). http://projecteuclid.org/euclid.jdg/1090348132

  13. Li, J.: A degeneration formula of GW-invariants. J. Differ. Geom. 60(2), 199–293 (2002). http://projecteuclid.org/euclid.jdg/1090351102

  14. Luoto, K., Mykytiuk, S., van Willigenburg, S.: An Introduction to Quasisymmetric Schur Functions. Springer Briefs in Mathematics. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7300-8. (Hopf algebras, quasisymmetric functions, and Young composition tableaux)

    Book  MATH  Google Scholar 

  15. Olsson, M.C.: Logarithmic geometry and algebraic stacks. Ann. Sci. École Norm. Sup. (4) 36(5), 747–791 (2003). https://doi.org/10.1016/j.ansens.2002.11.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Vezzosi, G., Vistoli, A.: Higher algebraic \(K\)-theory for actions of diagonalizable groups. Invent. Math. 153(1), 1–44 (2003). https://doi.org/10.1007/s00222-002-0275-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Oesinghaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oesinghaus, J. Quasisymmetric functions and the Chow ring of the stack of expanded pairs. Res Math Sci 6, 5 (2019). https://doi.org/10.1007/s40687-018-0168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-018-0168-7

Keywords

Mathematics Subject Classification

Navigation