Skip to main content
Log in

Abstract

The microdrill serves as precision cutting tool employed in the drilling of printed circuit boards (PCBs). The edge defects, such as grinding marks and burrs resulting from the grinding process, significantly impairs both the drilling quality and service life. Hence, it is imperative to meticulously prepare the cutting edge to ensure optimal cutting performance. In this paper, the cutting edge of cemented carbide microdrill was prepared by shear thickening polishing (STP) method. To achieve efficient cutting edge preparation of microdrill, STP experiment was carried out to evaluate the polishing force and determine the suitable processing parameters. Furthermore, the electrolysis combined shear thickening polishing (E-STP) method was employed in microdrill edge preparation, and the influence of different electrolytic voltage on the edge preparation effect was studied. The experimental results indicate that cutting edge preparation efficiency of microdrill in the STP process can be successfully increased by increasing the polishing speed, the main cutting edge radius increases from the initial 2.77 ± 0.4 μm to the highest 3.9 ± 0.3 μm after 2 min processing (polishing speed v = 85 rpm). The E-STP method is proven as an effective way in removing microdrill edge defects with a smaller polishing speed (v = 55 rpm). But, drilling experiments show that the wear resistance and drilling accuracy of the E-STP prepared microdrill (r average 3.6 μm) is significantly worse than that of the STP prepared microdrill (r average 3.5 μm) due to the Co loss. Overall, our research provides a new idea for realizing efficient cutting edge preparation of microdrill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shi, H., Liu, X., & Lou, Y. (2019). Materials and micro drilling of high frequency and high speed printed circuit board: A review. The International Journal of Advanced Manufacturing, 100, 827–841. https://doi.org/10.1007/s00170-018-2711-5

    Article  Google Scholar 

  2. Kim, S., Lee, I., & Kim, H. (2020). Fabrication of Parts with Integrated Circuits by Selective Electroless Plating of Additively Manufactured Plastic Substrates. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 1–9. https://doi.org/10.1007/s40684-020-00252-0

    Article  Google Scholar 

  3. Arunasalam, M., Leman, Z. B., Baharudin, B. T. H. T. B., Sulaiman, S. B., & Das, C. S. A. (2021). Challenges in Minimizing Copper Dissolution for Lead Free Wave Soldering in Surface Mount Technology Going Towards Green Manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 645–660. https://doi.org/10.1108/03056121011087212

    Article  Google Scholar 

  4. Hasan, M., Zhao, J., & Jiang, Z. (2017). A review of modern advancements in micro drilling techniques. Journal of Manufacturing Processes, 29(Oct.), 343–375. https://doi.org/10.1016/j.jmapro.2017.08.006

    Article  Google Scholar 

  5. Zhu, R., Zhang, H. M., Wang, J. L., Li, H. N., Li, J. M., Zhang, Z. S., Zhu, Y. C., & Jiang, Z. Y. (2023). Effect of WC Content on Microstructure and Element Diffusion of Nano WC-Co-TiC/304 Stainless Steel Composites for Micro Drill. Metals, 13(3), 475. https://doi.org/10.3390/met13030475

    Article  Google Scholar 

  6. Zhang, H., Zhao, S., Wang, L. N., Li, C., & Hou, S. X. (2019). Micro-drilling of AISI 1045 steel using a centering micro-drill. The International Journal of Advanced Manufacturing Technology, 103(9–12), 4189–4203. https://doi.org/10.1007/s00170-019-03758-3

    Article  Google Scholar 

  7. Azim, S., Gangopadhyay, S., Mahapatra, S. S., & Mittal, R. K. (2022). Performance evaluation of CrAlN and TiAlN coatings deposited by HiPIMS in micro drilling of a Ni-based superalloy. Surface & Coatings Technology, 449, 128980. https://doi.org/10.1016/j.surfcoat.2022.128980

    Article  Google Scholar 

  8. Zhuang, K. J., Fu, C. N., Weng, J., & Hu, C. (2021). Cutting edge microgeometries in metal cutting: A review. The International Journal of Advanced Manufacturing Technology, 116(7–8), 2045–2092. https://doi.org/10.1007/s00170-021-07558-6

    Article  Google Scholar 

  9. Bassett, E., Köhler, J., & Denkena, B. (2012). On the honed cutting edge and its side effects during orthogonal turning operations of AISI1045 with coated WC-Co inserts. CIRP Journal of Manufacturing Science and Technology, 5(2), 108–126. https://doi.org/10.1016/j.cirpj.2012.03.004

    Article  Google Scholar 

  10. Bouzakis, K. D., Bouzakis, E., Skordaris, G., Makrimallakis, S., Tsouknidas, A., & Katirtzoglou, G. (2011). Effect of PVD films wet micro-blasting by various Al2O3 grain sizes on the wear behaviour of coated tools. Surface & Coatings Technology, 205, S128–S132. https://doi.org/10.1016/j.surfcoat.2011.03.046

    Article  Google Scholar 

  11. Uhlmann, E., Oberschmidt, D., Kuche, Y., Loewenstein, A., Dornfeld, D., & Helu, M. (2014). Cutting Edge Preparation of Micro Milling Tools. Procedia CIRP, 14, 349–354. https://doi.org/10.1016/j.procir.2014.03.083

    Article  Google Scholar 

  12. Uhlmann, E., Oberschmidt, D., Kuche, Y., Löwenstein, A., Loewenstein, A., & Winker, I. (2016). Effects of Different Cutting Edge Preparation Methods on Micro Milling Performance. Procedia CIRP, 46, 352–355. https://doi.org/10.1016/j.procir.2016.04.004

    Article  Google Scholar 

  13. Krebs, E., Wolf, M., Biermann, D., & Stangier, D. (2018). High-quality cutting edge preparation of micromilling tools using wet abrasive jet machining process. Production Engineering, 12(1), 45–51. https://doi.org/10.1007/s11740-017-0787-7

    Article  Google Scholar 

  14. Schneider, F., Effgen, C., Kirsch, B., & Aurich, J. C. (2019). Manufacturing and preparation of micro cutting tools: Influence on chip formation and surface topography when micro cutting titanium. Production Engineering, 13(6), 731–741. https://doi.org/10.1007/s11740-019-00927-x

    Article  Google Scholar 

  15. Li, M., Lyu, B. H., Yuan, J. L., Dong, C. C., & Dai, W. T. (2015). Shear-thickening polishing method. International Journal of Machine Tools and Manufacture, 94, 88–99. https://doi.org/10.1016/j.ijmachtools.2015.04.010

    Article  Google Scholar 

  16. Joseph, S., Philip, K., Fritz, K., Sebastian, M., & Reginaldo, C. (2017). Dynamic jamming in dense suspensions: Surface finishing and edge honing applications. CIRP Annals-Manufacturing Technology, 66(1), 321–324. https://doi.org/10.1016/j.cirp.2017.04.082

    Article  Google Scholar 

  17. Chan, J., & Koshy, P. (2020). Tool edge honing using shear jamming abrasive media. CIRP Annals, 69(1), 289–292. https://doi.org/10.1016/j.cirp.2020.04.097

    Article  Google Scholar 

  18. Zhou, Y., Fang, Y., Shao, L. Y., Dai, Y. F., Wang, J. H., Wang, X., Yuan, J. L., Guo, W. G., & Lyu, B. H. (2023). Edge preparation methods for cutting tools: A review. Frontiers of Mechanical Engineering, 18(4), 50. https://doi.org/10.1007/s11465-023-0766-y

    Article  Google Scholar 

  19. Shao, L. Y., Zhou, Y., Fang, W., Wang, J. H., Wang, X., Deng, Q. F., & Lyu, B. H. (2022). Preparation of cemented carbide insert cutting edge by flexible fiber-assisted shear thickening polishing method. Micromachines, 13(10), 1631. https://doi.org/10.3390/mi13101631

    Article  Google Scholar 

  20. Wang, J. H., Tang, Z. W., Goel, S., Zhou, Y., Dai, Y. F., Wang, J. H., & Lyu, B. H. (2023). Mechanism of material removal in tungsten carbide-cobalt alloy during chemistry enhanced shear thickening polishing. Journal of Materials Research and Technology, 25, 6865–6879. https://doi.org/10.1016/j.jmrt.2023.07.112

    Article  Google Scholar 

  21. Wang, J. H., Zhou, Y., Qiao, Z., Saurav, G., Wang, J. H., Wang, X., Chen, H. Y., Yuan, J. L., & Lyu, B. H. (2023). Surface polishing and modification of Ti-6Al-4V alloy by shear thickening polishing. Surface & Coatings Technology, 468, 129771. https://doi.org/10.1016/j.surfcoat.2023.129771

    Article  Google Scholar 

  22. Zhou, Y. F., Zhou, X. L., Wang, J. H., Guo, L. G., Dai, Y. F., Yuan, J. L., & Lyu, B. H. (2023). Electrolysis combined shear thickening polishing method. Journal of Manufacturing Processes, 107, 179–198. https://doi.org/10.1016/j.jmapro.2023.10.031

    Article  Google Scholar 

  23. Wyen, C. F., & Wegener, K. (2010). Influence of cutting edge radius on cutting forces in machining titanium. CIRP Annals, 59(1), 93–96. https://doi.org/10.1016/j.cirp.2010.03.056

    Article  Google Scholar 

  24. Lyu, B. H., Shao, Q., Hang, W., Chen, S. H., He, Q. K., & Yuan, J. L. (2020). Shear Thickening Polishing of Black Lithium Tantalite Substrate. International Journal of Precision Engineering and Manufacturing, 21, 1663–1675. https://doi.org/10.1007/s12541-020-00362-4

    Article  Google Scholar 

  25. Jia, X. M., Song, Y. X., Chen, X. X., Zhang, X. L., Bu, J. L., Wang, P. C., Ai, L., Sang, X. M., & Li, Y. G. (2011). Study on Tungsten Carbide Leaching of Cemented Carbide Tool in Sodium Carbonate Solution. Advanced Materials Research, 287–290, 1873–1876. https://doi.org/10.4028/www.scientific.net/AMR.287-290.1873

    Article  Google Scholar 

  26. Pang, G. B., Xin, K. K., Cai, X., Ji, T., Wang, S., & Zhang, B. (2017). Experimental study on surface morphology characteristics of YT15 cemented carbide by electrochemical machining. Journal of Dalian University of Technology, 57(04), 367–375. https://doi.org/10.7511/dllgxb201704006. in Chinese.

    Article  Google Scholar 

  27. Wu, Y. Y., & Sheu, D. Y. (2018). Investigating Tungsten Carbide Micro-Hole Drilling Characteristics by Desktop Micro-ECM with NaOH Solution. Micromachines, 9(10), 512. https://doi.org/10.3390/mi9100512

    Article  Google Scholar 

  28. Schubert, N., Schneider, M., & Michaelis, A. (2014). Electrochemical Machining of cemented carbides. International Journal of Refractory Metals & Hard Materials, 47, 56–60. https://doi.org/10.1016/j.ijrmhm.2014.06.010

    Article  Google Scholar 

  29. Esmailzadeh, S., Aliofkhazraei, M., & Sarlak, H. (2018). Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review. Protection of Metals and Physical Chemistry of Surfaces, 54(5), 976–989. https://doi.org/10.1134/S207020511805026X

    Article  Google Scholar 

  30. Li, C., Ji, S. M., Tan, D. P., & Liu, X. Z. (2014). Study of Near Wall Area Micro-cutting Mechanism and Finishing Characteristics for Softness Abrasive Flow Finishing. Journal of Mechanical Engineering, 50(09), 161–168. https://doi.org/10.3901/JME.2014.09.161. in Chinese.

    Article  Google Scholar 

  31. Mao, Z. S., & Yang, C. (2009). Challenges in Study of Single Particles and Particle Swarms. Chinese Journal of Chemical Engineering, 17(4), 535–545. https://doi.org/10.1016/S1004-9541(08)60242-6

    Article  Google Scholar 

  32. Shi, Y., Jin, Z. J., Jiang, G. N., Liu, Z. T., Zhou, Z. Z., & Wang, Z. B. (2019). Electrochemical Corrosion of YG15 Cemented Carbide. Journal of Chinese Society for Corrosion and Protection, 39(03), 253–259. https://doi.org/10.11902/1005.4537.2018.100. in Chinese.

    Article  Google Scholar 

  33. Zheng, L. J., Wang, C. Y., Yang, L. P., Song, Y. X., & Fu, L. Y. (2012). Characteristics of chip formation in the micro-drilling of multi-material sheets. International Journal of Machine Tools & Manufacture, 52(1), 40–49. https://doi.org/10.1016/j.jmatprotec.2012.05.004

    Article  Google Scholar 

  34. Zheng, L. J., Wang, C. Y., Fu, L. Y., Yang, L. P., Qu, Y. P., & Song, Y. X. (2012). Wear mechanisms of micro-drills during dry high speed drilling of PCB. Journal of Materials Processing Technology, 212(10), 1989–1997. https://doi.org/10.1016/j.jmatprotec.2012.05.004

    Article  Google Scholar 

Download references

Acknowledgements

This paper received financial support in form of National Natural Science Foundation of China (52175441).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahuan Wang or Binghai Lyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, J., Shao, X. et al. High Efficiency Preparation of Microdrill Edge by Shear Thickening Polishing. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-024-00634-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-024-00634-8

Keywords

Navigation