Skip to main content
Log in

Abstract

For mechanical systems where a human–machine interface or interaction is necessary, it is important to consider physical safety. In cases where robots and humans must coexist, these robots must have actuation that is inherently compliant to absorb physical impacts. However, these compliant actuators must possess high performance that is comparable with electro-mechanical actuators. Pneumatic artificial muscles (PAMs) are biologically inspired actuators that possess inherent compliance and are a prime candidate for implementation in future robotic applications. This article reviews several designs of contractile PAMs made from various materials and where the actuator may need to be pressurized, depressurized, or vacuumed to produce mechanical work. Although these PAMs are all physically compliant due to the inherent compressibility of air, their performance varies significantly from one design to the other such that it may be hard to identify a suitable actuator for a given application. This paper covers a broad range of contractile PAM designs and compares their performance based on a few metrics in order to help users determine which actuators have the most potential for future implementations. The paper also identifies a few areas where significant challenges will have to be solved for these new actuators to help pave the way for a world where robots can operate in close proximity to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Copyright IOP Science), b bundle of thin McKibben actuator [13] (Copyright ScienceDirect), c pleated pneumatic artificial muscles [20] (Copyright IOP Science), d elastomeric straight fiber actuator [22] (Copyright Willey), e flat artificial muscle [23] (Copyright IOP Science), f Cavatappi artificial muscles [24] (Copyright AAAS), g winded pneumatic artificial muscle [25] (Open access), h inverse pneumatic artificial muscle [27] (Copyright IEEE), i pneumatic artificial muscle using the buckling of elastomeric beams [28] (Copyright Wiley), j pneumatic artificial muscle using the tilting of elastomeric beams [29] (Copyright Wiley), and k bellow-like actuator [31] (Open access)

Fig. 2

(Copyright Taylor & Francais), b pouch motors [34], c paired pouch motor [40] (Copyright Wiley), d gusseted pouch motors [42], e series pneumatic artificial muscles [46] (Credit Hawkes Lab, UCSB), f fabric PAM [48] (Credit Nicholas Naclerio, Hawkes Lab, UCSB), g actuator using a transversal configuration to produce a longitudinal contraction [49] (Open access), h origami-based vacuum pneumatic artificial muscle [52], i armor-based stable force pneumatic artificial muscle [53], j vacuum actuator using a spring as support [55] (Copyright ScienceDirect), and k an actuator using an hyperbaric chamber to simultaneously use positive and negative pressures [57]

Fig. 3

(Copyright AAAS), d McKibben actuator using a helical conductive fiber for sensing [70] (Copyright ScienceDirect), e McKibben actuator using a conductive knit cover [71] (Copyright IEEE), f McKibben actuator using optical sensors [78] (Copyright IEEE), g actuator using snapthrough behavior for rapid motion [91] (Open access), h actuator made from self-healing polymer [97] (Copyright ScienceDirect), i actuator using liquid-to-gas phase transition for pumpless actuation [98] (Open access), and j magnetically induced heating of actuator using liquid-to-gas phase transition for untethered actuation [101] (Copyright AAAS)

Fig. 4

Similar content being viewed by others

Data availability

All data is available from the corresponding author upon reasonable request.

References

  1. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A., & Sitti, M. (2022). Soft actuators for real-world applications. Nature Reviews Materials, 7, 235–249. https://doi.org/10.1038/s41578-021-00389-7

    Article  Google Scholar 

  2. Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: A bioinspired evolution in robotics. Trends in Biotechnology, 31(5), 287–294. https://doi.org/10.1016/j.tibtech.2013.03.002

    Article  Google Scholar 

  3. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467–475. https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  4. Whitesides, G. M. (2018). Soft robotics. Angewandte Chemie, 57(16), 4258–4273. https://doi.org/10.1002/anie.201800907

    Article  Google Scholar 

  5. Mirvakili, S. M., & Hunter, I. W. (2018). Artificial muscles: Mechanisms, applications, and challenges. Advanced Materials, 30(6), 1704407. https://doi.org/10.1002/adma.201704407

    Article  Google Scholar 

  6. Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., Cianchetti, M., Tolley, M. T., & Shepherd, R. F. (2017). Soft robotics: Review of fluid-driven intrinsically soft devices manufacturing, sensing control and applications in human-robot interaction. Advanced Engineering Materials, 19(12), 1700016. https://doi.org/10.1002/adem.201700016

    Article  Google Scholar 

  7. Walker, J., Zidek, T., Harbel, C., Yoon, S., Strickland, F. S., Kumar, S., & Shin, M. (2020). Soft robotics: A review of recent developments of pneumatic soft actuators. Actuators, 9(1), 3. https://doi.org/10.3390/act9010003

    Article  Google Scholar 

  8. Geddes, L. A., Moore, A. G., Spencer, W. A., & Hoff, H. E. (1959). Electro-pneumatic control of the mckibben synthetic muscle. Orthopedic and Prosthetic Appliance Journal, 13(1), 33–36.

    Google Scholar 

  9. Engen, T. J. (1959). A plastic hand orthosis. Orthopedic & Prosthetic Appliance Journal, 13, 38–43.

    Google Scholar 

  10. Bolles, R., & B. Roth (1988) "Rubbertuators and applications for robotics," in Robotics Research: The 4th International Symposium, MIT Press

  11. Tondu, B. (2012). Modelling of the mckibben artificial muscle: A review. Journal of Intelligent Material Systems and Structures, 23(3), 225–253. https://doi.org/10.1177/1045389x11435435

    Article  Google Scholar 

  12. Choi, C.-P., & Hannaford, B. (1996). Measurement and modeling of mckibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation, 12(1), 90–102. https://doi.org/10.1109/70.481753

    Article  Google Scholar 

  13. Kurumaya, S., Nabae, H., Endo, G., & Suzumori, K. (2017). Design of thin mckibben muscle and multifilament structure. Sensors and Actuators A Physical, 261, 66–74. https://doi.org/10.1016/j.sna.2017.04.047

    Article  Google Scholar 

  14. Abe, T., et al. (2019). Fabrication of “18 weave” muscles and their application to soft power support suit for upper limbs using thin mckibben muscle. IEEE Robotics and Automation Letters, 4(3), 2532–2538. https://doi.org/10.1109/lra.2019.2907433

    Article  Google Scholar 

  15. Koizumi, S., Kurumaya, S., Nabae, H., Endo, G., & Suzumori, K. (2020). Recurrent braiding of thin mckibben muscles to overcome their limitation of contraction. Soft Robotics, 7(2), 251–258. https://doi.org/10.1089/soro.2019.0022

    Article  Google Scholar 

  16. Tsuji, T., Kojima, A., Okui, M., Hisamichi, I., & Nakamura, T. (2018). Deformation characteristic of the axially fiber reinforced cylindrical rubber subjected to inner pressure. Transactions of the JSME, 84(868), 18–00351. https://doi.org/10.1299/transjsme.18-00351]

    Article  Google Scholar 

  17. Suzuki, R., M. Okui, S. Iikawa, Y. Yamada, & T. Nakamura (2018) "Novel feedforward controller for straight-fiber-type artificial muscle based on an experimental identification model," in IEEE International Conference on Soft Robotics, Livorno, pp. 31–38.

  18. Daerden, F., & Lefeber, D. (2001). The concept and design of pleated pneumatic artificial muscles. International Journal of Fluid Power, 2(3), 41–50.

    Article  Google Scholar 

  19. Verrelst, B., Ham, R. V., Vanderborght, B., Lefeber, D., & Daerden, F. (2006). Second generation pleated pneumatic artificial muscle and its robotic applications. Advanced Robotics, 20(7), 783–805.

    Article  Google Scholar 

  20. Villegas, D., Van Damme, M., Vanderborght, B., Beyl, P., & Lefeber, D. (2012). Third–generation pleated pneumatic artificial muscles for robotic applications: Development and comparison with mckibben muscle. Advanced Robotics, 26(11–12), 1205–1227. https://doi.org/10.1080/01691864.2012.689722

    Article  Google Scholar 

  21. Daerden, F., & Lefeber, D. (2002). Pneumatic artificial muscles: Actuators for robotics and automation. European Journal of Mechanical and Enviromental Engineering, 47(1), 11–22.

    Google Scholar 

  22. Martinez, R. V., Fish, C. R., Chen, X., & Whitesides, G. M. (2012). Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 22(7), 1376–1384.

    Article  Google Scholar 

  23. Wirekoh, J., & Park, Y.-L. (2017). Design of flat pneumatic artificial muscles. Smart Materials and Structures, 26(3), 035009. https://doi.org/10.1088/1361-665X/aa5496

    Article  Google Scholar 

  24. Higueras-Ruiz, D. R., Shafer, M. W., & Feigenbaum, H. P. (2021). Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes. Science Robotics, 6, abd5383.

    Article  Google Scholar 

  25. Xie, D., Ma, Z., Liu, J., & Zuo, S. (2021). Pneumatic artificial muscle based on novel winding method. Actuators, 10(5), 100. https://doi.org/10.3390/act10050100

    Article  Google Scholar 

  26. Liu, J., Ma, Z., Wang, Y., & Zuo, S. (2022). Reconfigurable self-sensing pneumatic artificial muscle with locking ability based on modular multi-chamber soft actuator. IEEE Robotics and Automation Letters, 7(4), 8635–8642. https://doi.org/10.1109/lra.2022.3189154

    Article  Google Scholar 

  27. Hawkes, E. W., D. L. Christensen, & A. M. Okamura, (2016) "Design and implementation of a 300% strain soft artificial muscle," in 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Stockholm, pp. 4022–4029

  28. Yang, D., et al. (2016). Buckling pneumatic linear actuators inspired by muscle. Advanced Materials Technologies, 1(3), 1600055. https://doi.org/10.1002/admt.201600055

    Article  Google Scholar 

  29. Yang, D., Verma, M. S., Lossner, E., Stothers, D., & Whitesides, G. M. (2017). Negative-pressure soft linear actuator with a mechanical advantage. Advanced Materials Technologies, 2(1), 1600164. https://doi.org/10.1002/admt.201600164

    Article  Google Scholar 

  30. Oguntosin, V., & Akindele, A. (2019). Design and characterization of artificial muscles from wedge-like pneumatic soft modules. Sensors and Actuators A Physical, 297, 111523. https://doi.org/10.1016/j.sna.2019.07.047

    Article  Google Scholar 

  31. Joe, S., Totaro, M., Wang, H., & Beccai, L. (2021). Development of the ultralight hybrid pneumatic artificial muscle: Modelling and optimization. PLoS One, 16(4), e0250325. https://doi.org/10.1371/journal.pone.0250325

    Article  Google Scholar 

  32. Gregov, G., Ploh, T., & Kamenar, E. (2022). Design, development and experimental assessment of a cost-effective bellow pneumatic actuator. Actuators, 11, 170. https://doi.org/10.3390/act11060170

    Article  Google Scholar 

  33. Belforte, G., Eula, G., Ivanov, A., & Visan, A. L. (2014). Bellows textile muscle. The Journal of The Textile Institute, 105(3), 356–364. https://doi.org/10.1080/00405000.2013.840414

    Article  Google Scholar 

  34. Niiyama, R., Sun, X., Sung, C., An, B., Rus, D., & Kim, S. (2015). Pouch motors: Printable soft actuators integrated with computational design. Soft Robotics, 2(2), 59–70. https://doi.org/10.1089/soro.2014.0023

    Article  Google Scholar 

  35. Chang, S.-Y. et al. (2015) “Design of small-size pouch motors for rat gait rehabilitation device,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, pp. 4578-4581

  36. Veale, A. J., Xie, S. Q., & Anderson, I. A. (2016). Characterizing the peano fluidic muscle and the effects of its geometry properties on its behavior. Smart Materials and Structures, 25(6), 065013. https://doi.org/10.1088/0964-1726/25/6/065013

    Article  Google Scholar 

  37. Veale, A. J., Xie, S. Q., & Anderson, I. A. (2016). Modeling the peano fluidic muscle and the effects of its material properties on its static and dynamic behavior. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/25/6/065014

    Article  Google Scholar 

  38. Kim, W., Park, H., & Kim, J. (2021). Compact flat fabric pneumatic artificial muscle (ffpam) for soft wearable robotic devices. IEEE Robotics and Automation Letters, 6(2), 2603–2610. https://doi.org/10.1109/lra.2021.3062012

    Article  Google Scholar 

  39. Nguyen, P. H., & Zhang, W. (2020). Design and computational modeling of fabric soft pneumatic actuators for wearable assistive devices. Scientific Reports. https://doi.org/10.1038/s41598-020-65003-2

    Article  Google Scholar 

  40. Oh, N., Park, Y. J., Lee, S., Lee, H., & Rodrigue, H. (2019). Design of paired pouch motors for robotic applications. Advanced Materials Technologies, 4(1), 1800414. https://doi.org/10.1002/admt.201800414

    Article  Google Scholar 

  41. Li, S., Lin, J., Kang, H., Cheng, Y., & Chen, Y. (2022). Bio-inspired origamic pouch motors with a high contraction ratio and enhanced force output. Robotics and Autonomous Systems, 149, 103983. https://doi.org/10.1016/j.robot.2021.103983

    Article  Google Scholar 

  42. Jang, J. H., Jamil, B., Moon, Y., Coutinho, A., Park, G., & Rodrigue, H. (2023). Design of gusseted pouch motors for improved soft pneumatic actuation. IEEE/ASME Transactions on Mechatronics. https://doi.org/10.1109/tmech.2023.3244347

    Article  Google Scholar 

  43. Wang, S., Miranda, E. F., & Blumenschein, L. H. (2023). The folded pneumatic artificial muscle (foldpam): Towards programmability and control via end geometry. IEEE Robotics and Automation Letters, 8(3), 1383–1390. https://doi.org/10.1109/lra.2023.3238160

    Article  Google Scholar 

  44. Kwon, J., Yoon, S. J., & Park, Y.-L. (2020). Flat inflatable artificial muscles with large stroke and adjustable force– length relations. IEEE Transactions on Robotics, 36(3), 743–756. https://doi.org/10.1109/tro.2019.2961300

    Article  Google Scholar 

  45. Xie, D., Liu, J., & Zuo, S. (2021). Pneumatic artificial muscle with large stroke based on a contraction ratio amplification mechanism and self-contained sensing. IEEE Robotics and Automation Letters, 6(4), 8599–8606. https://doi.org/10.1109/lra.2021.3113375

    Article  Google Scholar 

  46. Greer, J. D., T. K. Morimoto, A. M. Okamura, & E. W. Hawkes, (2017) "Series pneumatic artificial muscles (spams) and application to a soft continuum robot," in IEEE International Conference on Robotics and Automation, IEEE, Singapore, pp. 5503–5510

  47. Diteesawat, R. S., Helps, T., Taghavi, M., & Rossiter, J. (2021). Characteristic analysis and design optimization of bubble artificial muscles. Soft Robotics, 8(2), 186–199. https://doi.org/10.1089/soro.2019.0157

    Article  Google Scholar 

  48. Naclerio, N. D., & Hawkes, E. W. (2020). Simple, low-hysteresis, foldable, fabric pneumatic artificial muscle. IEEE Robotics and Automation Letters, 5(2), 3406–3413. https://doi.org/10.1109/LRA.2020.2976309

    Article  Google Scholar 

  49. Yang, H. D., Greczek, B. T., & Asbeck, A. T. (2019). Modeling and analysis of a high-displacement pneumatic artificial muscle with integrated sensing. Frontiers in Robotics and AI, 5, 136. https://doi.org/10.3389/frobt.2018.00136

    Article  Google Scholar 

  50. Li, S., Vogt, D. M., Rus, D., & Wood, R. J. (2017). Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13132–13137. https://doi.org/10.1073/pnas.1713450114

    Article  Google Scholar 

  51. Felt, W., M. A. Robertson, & J. Paik, (2018) “Modeling vacuum bellows soft pneumatic actuators with optimal mechanical performance,” in IEEE International Conference on Soft Robotics, IEEE, Livorno, pp. 534–540

  52. Lee, J.-G., & Rodrigue, H. (2019). Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robotics, 6(1), 109–117. https://doi.org/10.1089/soro.2018.0063

    Article  Google Scholar 

  53. Lee, J.-G., & Rodrigue, H. (2022). Armor-based stable force pneumatic artificial muscles for steady actuation properties. Soft Robotics, 9(3), 413–424. https://doi.org/10.1089/soro.2020.0117

    Article  Google Scholar 

  54. Yu, B., Yang, J., Du, R., & Zhong, Y. (2021). A versatile pneumatic actuator based on scissor mechanisms: Design, modeling, and experiments. IEEE Robotics and Automation Letters, 6(2), 1288–1295. https://doi.org/10.1109/lra.2021.3057286

    Article  Google Scholar 

  55. Kulasekera, A. L., Arumathanthri, R. B., Chathuranga, D. S., Gopura, R. A. R. C., & Lalitharatne, T. D. (2021). A thin-walled vacuum actuator (thinvac) and the development of multi-filament actuators for soft robotic applications. Sensors and Actuators A Physical, 332, 113088. https://doi.org/10.1016/j.sna.2021.113088

    Article  Google Scholar 

  56. Li, S., Vogt, D. M., Bartlett, N. W., Rus, D., & Wood, R. J. (2019). Tension pistons: Amplifying piston force using fluid-induced tension in flexible materials. Advanced Functional Materials, 29(30), 1901419. https://doi.org/10.1002/adfm.201901419

    Article  Google Scholar 

  57. Coutinho, A., Park, J. H., Jamil, B., Choi, H. R., & Rodrigue, H. (2023). Hyperbaric vacuum-based artificial muscles for high-performance actuation. Advanced Intelligent Systems, 5(1), 2200090. https://doi.org/10.1002/aisy.202200090

    Article  Google Scholar 

  58. Tawk, C., M. In Het Panhuis, G. M. Spinks, & G. Alici. (2018) Bioinspired 3d printable soft vacuum actuators for locomotion robots, grippers and artificial muscles. Soft Robotics, 5(6), 685-694. https://doi.org/10.1089/soro.2018.0021

  59. Yi, J., Chen, X., Song, C., & Wang, Z. (2018). Fiber-reinforced origamic robotic actuator. Soft. Robotics, 5(1), 81–92. https://doi.org/10.1089/soro.2016.0079

    Article  Google Scholar 

  60. Xie, D., Zuo, S., & Liu, J. (2020). A novel flat modular pneumatic artificial muscle. Smart Materials and Structures, 29(6), 065013. https://doi.org/10.1088/1361-665X/ab84b9

    Article  Google Scholar 

  61. Han, K., Kim, N. H., & Shin, D. (2018). A novel soft pneumatic artificial muscle with high-contraction ratio. Soft Robotics. https://doi.org/10.1089/soro.2017.0114

    Article  Google Scholar 

  62. Tawk, C., G. M. Spinks, M. i. h. Panhuis, & G. Alici, (2019) “3d printable vacuum-powered soft linear actuators,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Hong Kong, pp. 50–55

  63. Zhang, Z., W. Fan, G. Chen, J. Luo, Q. Lu, & H. Wang. (2021). A 3d printable origami vacuum pneumatic artificial muscle with fast and powerful motion. https://doi.org/10.1109/RoboSoft51838.2021.9479194

  64. Jin, T., et al. (2022). Origami-inspired soft actuators for stimulus perception and crawling robot applications. IEEE Transactions on Robotics, 38(2), 748–764. https://doi.org/10.1109/tro.2021.3096644

    Article  Google Scholar 

  65. Schaffner, M., Faber, J. A., Pianegonda, L., Ruhs, P. A., Coulter, F., & Studart, A. R. (2018). 3d printing of robotic soft actuators with programmable bioinspired architectures. Nature Communications. https://doi.org/10.1038/s41467-018-03216-w

    Article  Google Scholar 

  66. Pascali, C. D., Naselli, G. A., Palagi, S., Scharff, R. B. N., & Mazzolai, B. (2022). 3d-printed biomimetic artificial muscles using soft actuators that contract and elongate. Science Robotics, 7(68), eabn4155.

    Article  Google Scholar 

  67. Kuriyama, S., Ding, M., Kurita, Y., Ueda, J., & Ogasawar, T. (2009). Flexible sensor for mckibben pneumatic artificial muscle actuator. International Journal of Automation Technology, 3(6), 731–740. https://doi.org/10.20965/ijat.2009.p0731

    Article  Google Scholar 

  68. Misumi, J., S. Wakimoto, & K. Suzumori, (2015) “Experimental investigation of conductive fibers for a smart pneumatic artificial muscle,” in IEEE Conference on Robotics and Biomimetics, Zhuhai, pp. 2335–2340

  69. Ho, V. A., & S. Hirai, (2015) “Measuring mckibben actuator shrinkage using fiber sensor,” in IEEE International Symposium on Robot and Human Interactive Communication, Kobe, Japan, pp. 628–633

  70. Wakimoto, S., Misumi, J., & Suzumori, K. (2016). New concept and fundamental experiments of a smart pneumatic artificial muscle with a conductive fiber. Sensors and Actuators A Physical, 250, 48–54. https://doi.org/10.1016/j.sna.2016.08.004

    Article  Google Scholar 

  71. Jamil, B., Lee, S., & Choi, Y. (2019). Fabrication, characterization and control of knit-covered pneumatic artificial muscle. IEEE Access, 7, 84770–84783. https://doi.org/10.1109/access.2019.2925682

    Article  Google Scholar 

  72. Pal, S., D. Sarkar, S. S. Roy, A. Kumar, & A. Arora, (2020) “Development of a stretchable and flexible conductive fabric based sensorized pneumatic artificial muscle,” in International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, pp. 339–344

  73. Park, Y.-L., & R. J. Wood, (2013) “Smart pneumatic artificial muscle actuator with embedded microfluidic sensing,” in IEEE SENSORS, Baltimore, pp. 1–4

  74. Zhong, S., et al. (2022). A contraction length feedback method for the mckibben pneumatic artificial muscle. Sensors and Actuators A Physical, 334, 113321. https://doi.org/10.1016/j.sna.2021.113321

    Article  Google Scholar 

  75. Felt, W., Chin, K. Y., & Remy, C. D. (2016). Contraction sensing with smart braid mckibben muscles. IEEE/ASME Transactions on Mechatronics, 21(3), 1201–1209. https://doi.org/10.1109/TMECH.2015.2493782

    Article  Google Scholar 

  76. Erin, O., N. Pol, L. Valle, & Y.-L. Park,(2016) “Design of a bio-inspired pneumatic artificial muscle with self-contained sensing,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, pp. 2115–2119

  77. Tiziani, L. O., T. W. Cahoon, & F. L. Hammond, (2017) “Sensorized pneumatic muscle for force and stiffness control,” in IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 5545–5552

  78. Jamil, B., & Choi, Y. (2021). Modified stiffness based soft optical waveguide integrated pneumatic artificial muscle (pam) actuators for contraction and force sensing. IEEE/ASME Transactions on Mechatronics, 26(6), 3243–3253. https://doi.org/10.1109/tmech.2021.3056563

    Article  Google Scholar 

  79. Tiziani, L. O., & Hammond, F. L. (2020). Optical sensor-embedded pneumatic artificial muscle for position and force estimation. Soft Robotics, 7(4), 462–477. https://doi.org/10.1089/soro.2019.0019

    Article  Google Scholar 

  80. Fu, C., Wang, K., Tang, W., Nilghaz, A., Hurren, C., Wang, X., Xu, W., Su, B., & Xia, Z. (2022). Multi-sensorized pneumatic artificial muscle yarns. Chemical Engineering Journal, 446, 137241. https://doi.org/10.1016/j.cej.2022.137241

    Article  Google Scholar 

  81. Wirekoh, J., Valle, L., Pol, N., & Park, Y. L. (2019). Sensorized, flat, pneumatic artificial muscle embedded with biomimetic microfluidic sensors for proprioceptive feedback. Soft Robotics, 6(6), 768–777. https://doi.org/10.1089/soro.2018.0110

    Article  Google Scholar 

  82. Lorenzon, L., Beccali, G., Maselli, M., & Cianchetti, M. (2022) A self-sensing inverse pneumatic artificial muscle. In IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, United Kingdom (pp. 817–822). https://doi.org/10.1109/RoboSoft54090.2022.9762204

  83. Lynch, J. P., Veale, A. J., Anderson, I. A., & Xie, S. Q. (2015). The smart peano fluidic muscle: A low profile flexible orthosis actuator that feels pain. In Proc. SPIE 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, California, United States, 94351V. https://doi.org/10.1117/12.2084130

  84. Joe, S., Wang, H., Totaro, M., & Beccai, L. (2021). Sensing deformation in vacuum driven foam-based actuator via inductive method. Frontiers in Robotics & AI, 8, 742885. https://doi.org/10.3389/frobt.2021.742885

    Article  Google Scholar 

  85. Kulasekera, A. L., Arumathanthri, R. B., Chathuranga, D. S., Gopura, R. A. R. C., & Lalitharatne, T. D. (2021). A low-profile vacuum actuator (lpvac) with integrated inductive displacement sensing for a novel sit-to-stand assist exosuit. IEEE Access, 9, 117067–117079. https://doi.org/10.1109/access.2021.3106319

    Article  Google Scholar 

  86. Wehner, M., et al. (2014). Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robotics, 1(4), 263–274. https://doi.org/10.1089/soro.2014.0018

    Article  Google Scholar 

  87. Lee, J.-G., & Rodrigue, H. (2019). Efficiency of origami-based vacuum pneumatic artificial muscle for off-grid operation. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 789–797. https://doi.org/10.1007/s40684-019-00142-0

    Article  Google Scholar 

  88. Xavier, M. S., Fleming, A. J., & Yong, Y. K. (2021). Design and control of pneumatic systems for soft robotics: A simulation approach. IEEE Robotics and Automation Letters, 6(3), 5800–5807. https://doi.org/10.1109/lra.2021.3086425

    Article  Google Scholar 

  89. Coutinho, A., & Rodrigue, H. (2023). Fluidic hardware strategies for powering combined negative and positive pressure artificial muscles. Advanced Engineering Materials. https://doi.org/10.1002/adem.202300071

    Article  Google Scholar 

  90. Overvelde, J. T., Kloek, T., D’Haen, J. J., & Bertoldi, K. (2015). Amplifying the response of soft actuators by harnessing snap-through instabilities. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 10863–8. https://doi.org/10.1073/pnas.1504947112

    Article  Google Scholar 

  91. Lee, H., & Rodrigue, H. (2023). Harnessing the nonlinear properties of buckling inflatable tubes for complex robotic behaviors. Materials Today. https://doi.org/10.1016/j.mattod.2023.02.005

    Article  Google Scholar 

  92. Cho, H. S., Kim, T. H., Hong, T. H., & Park, Y. L. (2020). Ratchet-integrated pneumatic actuator (ripa): A large-stroke soft linear actuator inspired by sarcomere muscle contraction. Bioinspiration & Biomimetics, 15(3), 036011. https://doi.org/10.1088/1748-3190/ab7762

    Article  Google Scholar 

  93. Jang, J. H., Coutinho, A., Park, Y. J., & Rodrigue, H. (2023). A positive and negative pressure soft linear brake for wearable applications. IEEE Transactions on Industrial Electronics, 70(1), 688–698. https://doi.org/10.1109/tie.2022.3148746

    Article  Google Scholar 

  94. Usevitch, N. S., A. M. Okamura, & E. W. Hawkes, (2018) “Apam: Antagonistic pneumatic artificial muscle,” in IEEE International Conference on Robotics and Automation (ICRA), IEEE, Brisbane, pp. 1539–1546

  95. Terryn, S., Brancart, J., Lefeber, D., Van Assche, G., & Vanderborght, B. (2018). A pneumatic artificial muscle manufactured out of self-healing polymers that can repair macroscopic damages. IEEE Robotics and Automation Letters, 3(1), 16–21. https://doi.org/10.1109/lra.2017.2724140

    Article  Google Scholar 

  96. Yu, K., Xin, A., Du, H., Li, Y., & Wang, Q. (2019). Additive manufacturing of self-healing elastomers. NPG Asia Materials. https://doi.org/10.1038/s41427-019-0109-y

    Article  Google Scholar 

  97. Naranjo, A., Martín, C., López-Díaz, A., Martín-Pacheco, A., Rodríguez, A. M., Javier Patiño, F., Antonia Herrero, M., Vázquez, A. S., & Vázquez, E. (2020). Autonomous self-healing hydrogel with anti-drying properties and applications in soft robotics. Applied Materials Today, 21, 100806. https://doi.org/10.1016/j.apmt.2020.100806

    Article  Google Scholar 

  98. Miriyev, A., Stack, K., & Lipson, H. (2017). Soft material for soft actuators. Nature communications, 8(1), 596. https://doi.org/10.1038/s41467-017-00685-3

    Article  Google Scholar 

  99. Miriyev, A., Caires, G., & Lipson, H. (2018). Functional properties of silicone/ethanol soft-actuator composites. Materials & Design, 145, 232–242. https://doi.org/10.1016/j.matdes.2018.02.057

    Article  Google Scholar 

  100. Narumi, K., Sato, H., Nakahara, K., & Y ah Seong, K Morinaga, Y Kakehi, R Niiyama, Y Kawahara,. (2020). Liquid pouch motors: Printable planar actuators driven by liquid-to-gas phase change for shape-changing interfaces. IEEE Robotics and Automation Letters, 5(3), 3915–3922. https://doi.org/10.1109/lra.2020.2983681

    Article  Google Scholar 

  101. Mirvakili, S. M., Sim, D., Hunter, I. W., & Langer, R. (2020). Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Science Robotics, 5(41), 4239. https://doi.org/10.1126/scirobotics.aaz4239

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT & Future Planning) (No. 2020R1A4A1018227 and No. 2021R1A2C4001792).

Funding

This study was funded by National Research Foundation of Korea (NRF), 2020R1A4A1018227, Hugo Rodrigue, 2021R1A2C4001792, Hugo Rodrigue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Rodrigue.

Ethics declarations

Conflict of interet

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, B., Oh, N., Lee, JG. et al. A Review and Comparison of Linear Pneumatic Artificial Muscles. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 277–289 (2024). https://doi.org/10.1007/s40684-023-00531-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00531-6

Keywords

Navigation