Skip to main content
Log in

The State of the Art of Finite Element Analysis in Mechanical Clinching

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Clinching technology is a mechanical connection technology that is applied to connect metal or non-metal sheet materials. It is widely used in different applications, such as automobile, aircraft, household appliances and other industries. In order to reduce weight, save energy, reduce fuel consumption, reduce pollution and curb global warming, lightweight structures with clinched joint are increasingly used in transportation. The finite element technology is popularized in engineering, so that it can get similar results with the test after investing less time, manpower, energy and material resources, which is conducive to the prediction and smooth progress of the test. A review of the finite element analysis of clinching technology is provided in the present paper. The article’s work also discusses the strength of the clinched joint, the factors influencing the clinched joint’s strength, the failure mechanism of the clinched joint, etc. Furthermore, the novel technologies of clinching as well as the finite element models and methods used in clinching, are introduced. The present paper’s main objective was to review the recent developments in the finite element analysis of clinching and provide a basis for further investigation in this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Wang, T., Upadhyay, P., & Whalen, S. (2021). A review of technologies for welding magnesium alloys to steels. International Journal of Precision Engineering and Manufacturing - Green Technology, 8, 1027–1042. https://doi.org/10.1007/s40684-020-00247-x

    Article  Google Scholar 

  2. Rathinasuriyan, C., Pavithra, E., Sankar, R., & Kumar, V. S. S. (2021). Current status and development of submerged friction stir welding: a review. International Journal of Precision Engineering and Manufacturing - Green Technology, 8, 687–701. https://doi.org/10.1007/s40684-020-00187-6

    Article  Google Scholar 

  3. Buffa, G., Baffari, D., Ingarao, G., & Fratini, L. (2020). Uncovering technological and environmental potentials of aluminum alloy scraps recycling through friction stir consolidation. International Journal of Precision Engineering and Manufacturing - Green Technology, 7, 955–964. https://doi.org/10.1007/s40684-019-00159-5

    Article  Google Scholar 

  4. Das, H., Mondal, M., Hong, S. T., et al. (2018). Joining and fabrication of metal matrix composites by friction stir welding/processing. International Journal of Precision Engineering and Manufacturing - Green Technology, 5, 151–172. https://doi.org/10.1007/s40684-018-0016-7

    Article  Google Scholar 

  5. Morichiro, K., & Abe Y. (2018). A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation. International Journal of Precision Engineering and Manufacturing - Green Technology, 1, 1–11. https://doi.org/10.1016/j.ijlmm.2018.02.002

    Article  Google Scholar 

  6. Deutsches Reichs patent. (1897). DRP-No. 98517 (in German)

  7. Lee, C.-J., Lee, S.-H., Lee, J.-M., et al. (2014). Design of hole-clinching process for joining CFRP and aluminum alloy sheet. International Journal of Precision Engineering and Manufacturing, 15, 1151–1157. https://doi.org/10.1007/s12541-014-0450-6

    Article  Google Scholar 

  8. Lee, C. J., Lee, J. M., Ryu, H. Y., et al. (2014). Design of hole-clinching process for joining of dissimilar materials - Al6061-T4 alloy with DP780 steel, hot-pressed 22MnB5 steel, and carbon fiber reinforced plastic. Journal of Materials Processing Technology, 214, 2169–2178. https://doi.org/10.1016/j.jmatprotec.2014.03.032

    Article  Google Scholar 

  9. Wen, T., Huang, Q., Liu, Q., et al. (2016). Joining different metallic sheets without protrusion by flat hole clinching process. International Journal of Advanced Manufacturing Technology, 85, 217–225. https://doi.org/10.1007/s00170-015-7936-y

    Article  Google Scholar 

  10. Zeng, K., He, X. C., Deng, C. J., et al. (2013). An image-based method for automatic crack detection for the mechanical test of clinch joints. Applied Mechanics and Materials, 457–458, 629–632. https://doi.org/10.4028/www.scientific.net/AMM.457-458.629

    Article  Google Scholar 

  11. Wiesenmayer, S., Müller, M., Dornberger, P., et al. (2018). Numerical investigation of the tool load in joining by forming of dissimilar materials using shear-clinching technology. Key Engineering Materials, 767, 397–404. https://doi.org/10.4028/www.scientific.net/KEM.767.397

    Article  Google Scholar 

  12. Wiesenmayer, S., Han, D., Müller, M., et al. (2019). Fundamental mechanisms and their interactions in shear-clinching technology and investigation of the process robustness. Materwiss Werksttech, 50, 987–1005. https://doi.org/10.1002/mawe.201900030

    Article  Google Scholar 

  13. Graser, M., Wiesenmayer, S., Müller, M., & Merklein, M. (2019). Application of tailor heat treated blanks technology in a joining by forming process. Journal of Materials Processing Technology, 264, 259–272. https://doi.org/10.1016/j.jmatprotec.2018.09.006

    Article  Google Scholar 

  14. Müller, M., Hörhold, R., Merklein, M., & Meschut, G. (2014). Analysis of material behaviour in experimental and simulative setup of joining by forming of aluminium alloy and high strength steel with shear-clinching technology. Advances in Materials Research, 966–967, 549–556. https://doi.org/10.4028/www.scientific.net/AMR.966-967.549

    Article  Google Scholar 

  15. Han, D., Hörhold, R., Müller, M., et al. (2018). Shear-clinching of multi-element specimens of aluminium alloy and ultra-high-strength steel. Key Engineering Materials, 767, 389–396. https://doi.org/10.4028/www.scientific.net/KEM.767.389

    Article  Google Scholar 

  16. Merklein, M., Meschut, G., Müller, M., & Hörhold, R. (2014). Basic investigations of non-pre-punched joining by forming of aluminium alloy and high strength steel with shear-clinching technology. Key Engineering Materials, 611–612, 1413–1420. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1413

    Article  Google Scholar 

  17. Abibe, A. B., Sônego, M., dos Santos, J. F., et al. (2016). On the feasibility of a friction-based staking joining method for polymer-metal hybrid structures. Materials and Design, 92, 632–642. https://doi.org/10.1016/j.matdes.2015.12.087

    Article  Google Scholar 

  18. Lin, P.-C., & Lo, S.-M. (2017). Friction stir clinching of alclad AA2024-T3 sheets. International Journal of Advanced Manufacturing Technology, 92, 2425–2437. https://doi.org/10.1007/s00170-017-0337-7

    Article  Google Scholar 

  19. Abibe, A. B., Sônego, M., Canto, L. B., et al. (2020). Process-Related Changes in Polyetherimide Joined by Friction-Based Injection Clinching Joining (F-ICJ). Materials (Basel), 13, 1027. https://doi.org/10.3390/ma13051027

    Article  Google Scholar 

  20. Haiyan, Z., & Mehta, K. P. (2020). Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024–T3 sheets. Vacuum, 178, 109445. https://doi.org/10.1016/j.vacuum.2020.109445

    Article  Google Scholar 

  21. Paidar, M., Vaira Vignesh, R., Moharrami, A., et al. (2020). Development and characterization of dissimilar joint between AA2024-T3 and AA6061-T6 by modified friction stir clinching process. Vacuum, 176, 109298. https://doi.org/10.1016/j.vacuum.2020.109298

    Article  Google Scholar 

  22. Zhang, Y., Shan, H., Li, Y., et al. (2017). Joining aluminum alloy 5052 sheets via novel hybrid resistance spot clinching process. Materials and Design, 118, 36–43. https://doi.org/10.1016/j.matdes.2017.01.017

    Article  Google Scholar 

  23. Zhang, Y., Shan, H., Li, Y., et al. (2017). Effects of the oxide film on the spot joining of aluminum alloy sheets: A comparative study between resistance spot welding and resistance spot clinching. International Journal of Advanced Manufacturing Technology, 92, 4231–4240. https://doi.org/10.1007/s00170-017-0387-x

    Article  Google Scholar 

  24. Zhang, Y., Wang, C., Shan, H., et al. (2018). High-toughness joining of aluminum alloy 5754 and DQSK steel using hybrid clinching–welding process. Journal of Materials Processing Technology, 259, 33–44. https://doi.org/10.1016/j.jmatprotec.2018.04.021

    Article  Google Scholar 

  25. Balawender, T., Sadowski, T., & Kneć, M. (2011). Technological problems and experimental investigation of hybrid: Clinched - adhesively bonded joint. Archives of Metallurgy and Materials. https://doi.org/10.2478/v10172-011-0047-3

    Article  Google Scholar 

  26. Balawender, T., Sadowski, T., & Golewski, P. (2012). Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension. Computational Materials Science (pp. 270–272). Amsterdam: Elsevier.

    Google Scholar 

  27. Abe, Y., Mori, K., & Kato, T. (2012). Joining of high strength steel and aluminium alloy sheets by mechanical clinching with dies for control of metal flow. Journal of Materials Processing Technology, 212, 884–889. https://doi.org/10.1016/j.jmatprotec.2011.11.015

    Article  Google Scholar 

  28. Abe, Y., Kato, T., Mori, K. I., & Nishino, S. (2014). Mechanical clinching of ultra-high strength steel sheets and strength of joints. Journal of Materials Processing Technology, 214, 2112–2118. https://doi.org/10.1016/j.jmatprotec.2014.03.003

    Article  Google Scholar 

  29. Abe, Y., Nihsino, S., Mori, K. I., & Saito, T. (2014). Improvement of joinability in mechanical clinching of ultra-high strength steel sheets using counter pressure with ring rubber. In Procedia engineering (pp. 2056–2061). Elsevier B.V. https://doi.org/10.4028/www.scientific.net/AMR.966-967.607

  30. Kaščák, Ľ, Spišák, E., & Mucha, J. (2015). Mechanical joining of various materials by clinching method. Key Engineering Materials, 662, 205–208. https://doi.org/10.4028/www.scientific.net/KEM.662.205

    Article  Google Scholar 

  31. Abe, Y., Ishihata, S., Maeda, T., & Mori, K. I. (2018). Mechanical clinching process using preforming of lower sheet for improvement of joinability. Procedia Manufacturing (pp. 1360–1367). Amsterdam: Elsevier.

    Google Scholar 

  32. Abe, Y., Saito, T., Nakagawa, K., & Mori, K. I. (2018). Rectangular shear clinching for joining of ultra-high strength steel sheets. Procedia Manufacturing (pp. 1354–1359). Amsterdam: Elsevier.

    Google Scholar 

  33. Abe, Y., Saito, T., Mori, K.-I., & Kato, T. (2018). Mechanical clinching with dies for control of metal flow of ultra-high-strength steel and high-strength steel sheets. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 232, 644–649. https://doi.org/10.1177/0954405416683429

    Article  Google Scholar 

  34. Behrens, B. A., Rolfes, R., Vucetic, M., et al. (2014). Material characterization for FEA of the clinching process of short fiber reinforced thermoplastics with an aluminum sheet. Advances in Materials Research, 966–967, 557–568. https://doi.org/10.4028/www.scientific.net/AMR.966-967.557

    Article  Google Scholar 

  35. Lambiase, F. (2015). Joinability of different thermoplastic polymers with aluminium AA6082 sheets by mechanical clinching. International Journal of Advanced Manufacturing Technology, 80, 1995–2006. https://doi.org/10.1007/s00170-015-7192-1

    Article  Google Scholar 

  36. Gude, M., Vogel, C., & Gröger, B. (2019). Simulation-aided development of a robust thermoclinching joining process for hybrid structures with textile reinforced thermoplastic composites and metallic components. Materwiss Werksttech, 50, 1027–1038. https://doi.org/10.1002/mawe.201900036

    Article  Google Scholar 

  37. Salamati, M., Soltanpour, M., Fazli, A., & Zajkani, A. (2019). Processing and tooling considerations in joining by forming technologies; part A—mechanical joining. International Journal of Advanced Manufacturing Technology, 101, 261–315. https://doi.org/10.1007/s00170-018-2823-y

    Article  Google Scholar 

  38. Wang, J., Yu, Y., Fu, C., et al. (2020). Experimental investigation of clinching CFRP/aluminum alloy sheet with prepreg sandwich structure. Journal of Materials Processing Technology, 277, 116422. https://doi.org/10.1016/j.jmatprotec.2019.116422

    Article  Google Scholar 

  39. Lambiase, F., & Di Ilio, A. (2015). Mechanical clinching of metal-polymer joints. Journal of Materials Processing Technology, 215, 12–19. https://doi.org/10.1016/j.jmatprotec.2014.08.006

    Article  Google Scholar 

  40. Gude, M., Hufenbach, W., Kupfer, R., et al. (2015). Development of novel form-locked joints for textile reinforced thermoplastices and metallic components. Journal of Materials Processing Technology, 216, 140–145. https://doi.org/10.1016/j.jmatprotec.2014.09.007

    Article  Google Scholar 

  41. Lambiase, F., & Ko, D. C. (2016). Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets. Materials and Design, 107, 341–352. https://doi.org/10.1016/j.matdes.2016.06.061

    Article  Google Scholar 

  42. Lambiase, F., Durante, M., & Di Ilio, A. (2016). Fast joining of aluminum sheets with Glass Fiber Reinforced Polymer (GFRP) by mechanical clinching. Journal of Materials Processing Technology, 236, 241–251. https://doi.org/10.1016/j.jmatprotec.2016.04.030

    Article  Google Scholar 

  43. Lambiase, F., & Ko, D. C. (2017). Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets. Composite Structures, 164, 180–188. https://doi.org/10.1016/j.compstruct.2016.12.072

    Article  Google Scholar 

  44. Gude, M., Freund, A., Vogel, C., & Kupfer, R. (2017). Simulation of a novel joining process for fiber-reinforced thermoplastic composites and metallic components. Mechanics of Composite Materials, 52, 733–740. https://doi.org/10.1007/s11029-017-9623-6

    Article  Google Scholar 

  45. Pramanik, A., Basak, A. K., Dong, Y., et al. (2017). Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review. Composites. Part A, Applied Science and Manufacturing, 101, 1–29.

    Article  Google Scholar 

  46. Lin, P.-C., Lin, J.-W., & Li, G.-X. (2018). Clinching process for aluminum alloy and carbon fiber-reinforced thermoplastic sheets. International Journal of Advanced Manufacturing Technology, 97, 529–541. https://doi.org/10.1007/s00170-018-1960-7

    Article  Google Scholar 

  47. He, X. (2010). Recent development in finite element analysis of clinched joints. International Journal of Advanced Manufacturing Technology, 48, 607–612. https://doi.org/10.1007/s00170-009-2306-2

    Article  Google Scholar 

  48. Eshtayeh, M. M., & Hrairi, M. (2016). Recent and future development of the application of finite element analysis in clinching process. International Journal of Advanced Manufacturing Technology, 84, 2589–2608.

    Article  Google Scholar 

  49. Eshtayeh, M. M., Hrairi, M., & Mohiuddin, A. K. M. (2016). Clinching process for joining dissimilar materials: State of the art. International Journal of Advanced Manufacturing Technology, 82, 179–195. https://doi.org/10.1007/s00170-015-7363-0

    Article  Google Scholar 

  50. Mori, K. I., Bay, N., Fratini, L., et al. (2013). Joining by plastic deformation. CIRP Ann - Manufacturing Technology, 62, 673–694. https://doi.org/10.1016/j.cirp.2013.05.004

    Article  Google Scholar 

  51. Dean, A., & Rolfes, R. (2018). FE modeling and simulation framework for the forming of hybrid metal-composites clinching joints. Thin-Walled Structuring, 133, 134–140. https://doi.org/10.1016/j.tws.2018.09.034

    Article  Google Scholar 

  52. Lambiase, F. (2013). Influence of process parameters in mechanical clinching with extensible dies. International Journal of Advanced Manufacturing Technology, 66, 2123–2131. https://doi.org/10.1007/s00170-012-4486-4

    Article  Google Scholar 

  53. Eshteyah, M., Hrairi, M., Dawood, M. S., & Mohiuddin, A. K. M. (2015). Finite element modeling of clinching process for joining dissimilar materials. Advances in Materials Research, 1115, 109–112. https://doi.org/10.4028/www.scientific.net/AMR.1115.109

    Article  Google Scholar 

  54. He, X., Zhao, L., Yang, H., et al. (2014). Investigations of strength and energy absorption of clinched joints. Computational Materials Science, 94, 58–65. https://doi.org/10.1016/j.commatsci.2014.01.056

    Article  Google Scholar 

  55. Zhao, L., He, X. C., & Lu, Y. (2014). Research of mechanical behavior for rounded and rectangular clinched joint. Advances in Materials Research, 1035, 144–148. https://doi.org/10.4028/www.scientific.net/AMR.1035.144

    Article  Google Scholar 

  56. Jagtap, K. R., Ghorpade, S. Y., & Chopade, S. E. (2017). Finite Element Analysis of Mechanical Clinching Process. Materials Today: Proceedings (pp. 8104–8110). Amsterdam: Elsevier.

    Google Scholar 

  57. Varis, J., & Lepistö, J. (2003). A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters. Thin-Walled Structuring, 41, 691–709. https://doi.org/10.1016/S0263-8231(03)00026-0

    Article  Google Scholar 

  58. Lambiase, F., & Di Ilio, A. (2014). An experimental study on clinched joints realized with different dies. Thin-Walled Structuring, 85, 71–80. https://doi.org/10.1016/j.tws.2014.08.004

    Article  Google Scholar 

  59. Zheng, J. C., He, X. C., Xu, J. N., et al. (2012). Finite element analysis of energy saving jointing method base on energy materials: clinching. Advances in Materials Research, 577, 9–12. https://doi.org/10.4028/www.scientific.net/AMR.577.9

    Article  Google Scholar 

  60. He, X., Liu, F., Xing, B., et al. (2014). Numerical and experimental investigations of extensible die clinching. International Journal of Advanced Manufacturing Technology, 74, 1229–1236. https://doi.org/10.1007/s00170-014-6078-y

    Article  Google Scholar 

  61. Liu, F. L., He, X. C., & Zhao, L. (2014). A performance study of clinched joints with different material. Advances in Materials Research, 887–888, 1265–1268. https://doi.org/10.4028/www.scientific.net/AMR.887-888.1265

    Article  Google Scholar 

  62. Cumin, J., Stoi, A., Duspara, M., & Samardi, I. (2019). FEM numerical simulations of the mechanical clinching process of HC260y steel. Tehnicki Vjesnik, 26, 49–55. https://doi.org/10.17559/TV-20170529143820

  63. Lee, C.-J., Kim, J.-Y., Lee, S.-K., et al. (2010). Parametric study on mechanical clinching process for joining aluminum alloy and high-strength steel sheets. Journal of Mechanical Science and Technology, 24, 123–126. https://doi.org/10.1007/s12206-009-1118-5

    Article  Google Scholar 

  64. Abe, Y., Kato, T., & Mori, K. (2007). Joining of aluminium alloy and mild steel sheets using mechanical clinching. Materials Science Forum, 561–565, 1043–1046. https://doi.org/10.4028/www.scientific.net/MSF.561-565.1043

    Article  Google Scholar 

  65. Song, Y., Yang, L., Zhu, G., et al. (2019). Numerical and experimental study on failure behavior of steel-aluminium mechanical clinched joints under multiple test conditions. International Journal of Light Materials Manufacturing, 2, 72–79. https://doi.org/10.1016/j.ijlmm.2018.12.005

    Article  Google Scholar 

  66. Kaðèák, L., Spiðák, E., Kubík, R., & Mucha, J. (2017). Finite element calculation of clinching with rigid die of three steel sheets. Strength of Materials, 49, 488–499. https://doi.org/10.1007/s11223-017-9892-2

    Article  Google Scholar 

  67. Zhang, Y., He, X. C., & Liu, F. L. (2015). Study on the property of clinched joint in similar-dissimilar sheets about titanium alloy. Applied Mechanics and Materials, 723, 888–891. https://doi.org/10.4028/www.scientific.net/AMM.723.888

    Article  Google Scholar 

  68. Yang, H. Y., He, X. C., Zeng, K., & Ding, Y. F. (2013). Numerical simulation of clinching process in copper alloy sheets. Advances in Materials Research, 753–755, 439–442. https://doi.org/10.4028/www.scientific.net/AMR.753-755.439

    Article  Google Scholar 

  69. Dean, A., Rolfes, R., Grbic, N., et al. (2019). A FEM-based virtual test-rig for hybrid metal-composites clinching joints. Materwiss Werksttech, 50, 973–986. https://doi.org/10.1002/mawe.201800198

    Article  Google Scholar 

  70. Drossel, W. G., Falk, T., Israel, M., & Jesche, F. (2014). Unerring planning of clinching processes through the use of mathematical methods. Key Engineering Materials, 611–612, 1437–1444. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1437

    Article  Google Scholar 

  71. Mucha, J. (2011). The analysis of lock forming mechanism in the clinching joint. Materials and Design, 32, 4943–4954. https://doi.org/10.1016/j.matdes.2011.05.045

    Article  Google Scholar 

  72. de Paula, A. A., Aguilar, M. T. P., Pertence, A. E. M., & Cetlin, P. R. (2007). Finite element simulations of the clinch joining of metallic sheets. Journal of Materials Processing Technology, 182, 352–357. https://doi.org/10.1016/j.jmatprotec.2006.08.014

    Article  Google Scholar 

  73. Abe, Y., Kishimoto, M., Kato, T., & Mori, K. (2009). Joining of hot-dip coated steel sheets by mechanical clinching. International Journal of Material Forming, 2, 291–294. https://doi.org/10.1007/s12289-009-0446-4

    Article  Google Scholar 

  74. Atia, M. K. S., & Jain, M. K. (2018). Finite element analysis of material flow in die-less clinching process and joint strength assessment. Thin-Walled Structuring, 127, 500–515. https://doi.org/10.1016/j.tws.2018.03.001

    Article  Google Scholar 

  75. Lambiase, F., & Di Ilio, A. (2013). Finite element analysis of material flow in mechanical clinching with extensible dies. Journal of Materials Engineering and Performance, 22, 1629–1636. https://doi.org/10.1007/s11665-012-0451-5

    Article  Google Scholar 

  76. Lambiase, F. (2015). Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions. Journal of Materials Processing Technology, 225, 421–432. https://doi.org/10.1016/j.jmatprotec.2015.06.022

    Article  Google Scholar 

  77. Wang, X., Li, X., Shen, Z., et al. (2018). Finite element simulation on investigations, modeling, and multiobjective optimization for clinch joining process design accounting for process parameters and design constraints. International Journal of Advanced Manufacturing Technology, 96, 3481–3501. https://doi.org/10.1007/s00170-018-1708-4

    Article  Google Scholar 

  78. Coppieters, S., Cooreman, S., Lava, P., et al. (2011). Reproducing the experimental pull-out and shear strength of clinched sheet metal connections using FEA. International Journal of Material Forming, 4, 429–440. https://doi.org/10.1007/s12289-010-1023-6

    Article  Google Scholar 

  79. Jayasekara, V., Min, K. H., Noh, J. H., et al. (2010). Rigid-plastic and elastic-plastic finite element analysis on the clinching joint process of thin metal sheets. Metals and Materials International, 16, 339–347. https://doi.org/10.1007/s12540-010-0427-7

    Article  Google Scholar 

  80. Malý, P., Lopot, F., & Sojka, J. (2017). FEM model and experimental measurement of clinched joint. IOP Conference Serious Material Science Engineering, 179, 012051. https://doi.org/10.1088/1757-899X/179/1/012051

    Article  Google Scholar 

  81. Eshtayeh, M., Hrairi, M., & Dawood, M. S. (2017). Numerical investigation of springback in mechanical clinching process. International Journal of Engineering Materials Manufacturing, 2, 86–93. https://doi.org/10.26776/ijemm.02.04.2017.02

  82. Saberi, S., Enzinger, N., Vallant, R., et al. (2008). Influence of plastic anisotropy on the mechanical behavior of clinched joint of different coated thin steel sheets. International Journal of Material Forming, 1, 273–276. https://doi.org/10.1007/s12289-008-0349-9

    Article  Google Scholar 

  83. Han, S. L., Wu, Y. W., & Zeng, Q. L. (2012). Numerical simulation for heat transfer process of clinching with magnesium alloys. Advances in Materials Research, 472–475, 1995–1999. https://doi.org/10.4028/www.scientific.net/AMR.472-475.1995

    Article  Google Scholar 

  84. Lee, C. J., Kim, J. Y., Lee, S. K., et al. (2010). Design of mechanical clinching tools for joining of aluminium alloy sheets. Materials and Design, 31, 1854–1861. https://doi.org/10.1016/j.matdes.2009.10.064

    Article  Google Scholar 

  85. Pirondi, A., & Moroni, F. (2009). Clinch-bonded and rivet-bonded hybrid joints: application of damage models for simulation of forming and failure. Journal of Adhesion Science and Technology, 23, 1547–1574. https://doi.org/10.1163/156856109X433063

    Article  Google Scholar 

  86. Borsellino, C., Di Bella, G., & Ruisi, V. F. (2007). Study of new joining technique: flat clinching. Key Engineering Materials, 344, 685–692. https://doi.org/10.4028/www.scientific.net/KEM.344.685

    Article  Google Scholar 

  87. Chen, C., Fan, S., Han, X., et al. (2019). Experimental research on the compressed joints with different geometrical parameters. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 233, 174–181. https://doi.org/10.1177/0954405417711735

    Article  Google Scholar 

  88. Chen, C., Fan, S., Han, X., et al. (2017). Experimental study on the height-reduced joints to increase the cross-tensile strength. International Journal of Advanced Manufacturing Technology, 91, 2655–2662. https://doi.org/10.1007/s00170-016-9939-8

    Article  Google Scholar 

  89. Chen, C., Han, X., Zhao, S., et al. (2017). Comparative study on two compressing methods of clinched joints with dissimilar aluminum alloy sheets. International Journal of Advanced Manufacturing Technology, 93, 1929–1937. https://doi.org/10.1007/s00170-017-0650-1

    Article  Google Scholar 

  90. Chen, C., Han, X., Zhao, S., et al. (2018). Influence of sheet thickness on mechanical clinch–compress joining technology. Proceedings of Institutional Mechanic Engineering Part E Journal of Process Mechanic Engineering, 232, 662–673. https://doi.org/10.1177/0954408917735717

    Article  Google Scholar 

  91. Chen, C., Li, Y., Zhai, Z., et al. (2019). Comparative investigation of three different reforming processes for clinched joint to increase joining strength. Journal of Manufacturing Processes, 45, 83–91. https://doi.org/10.1016/j.jmapro.2019.06.009

    Article  Google Scholar 

  92. Chen, C., Li, Y., Zhang, H., et al. (2020). Investigation of a renovating process for failure clinched joint to join thin-walled structures. Thin-Walled Structuring, 151, 106686. https://doi.org/10.1016/j.tws.2020.106686

    Article  Google Scholar 

  93. Chen, C., Ran, X., Pan, Q., et al. (2020). Research on the mechanical properties of repaired clinched joints with different forces. Thin-Walled Structuring, 152, 106752. https://doi.org/10.1016/j.tws.2020.106752

    Article  Google Scholar 

  94. Chen, C., Zhao, S., Cui, M., et al. (2017). Numerical and experimental investigations of the reshaped joints with and without a rivet. International Journal of Advanced Manufacturing Technology, 88, 2039–2051. https://doi.org/10.1007/s00170-016-8889-5

    Article  Google Scholar 

  95. Chen, C., Zhao, S., Cui, M., et al. (2016). Mechanical properties of the two-steps clinched joint with a clinch-rivet. Journal of Materials Processing Technology, 237, 361–370. https://doi.org/10.1016/j.jmatprotec.2016.06.024

    Article  Google Scholar 

  96. Chen, C., Zhao, S., Cui, M., et al. (2016). An experimental study on the compressing process for joining Al6061 sheets. Thin-Walled Structuring, 108, 56–63. https://doi.org/10.1016/j.tws.2016.08.007

    Article  Google Scholar 

  97. Chen, C., Zhao, S., Cui, M., et al. (2018). Comparative investigation of auxiliary processes for increasing the strength of clinched joints. Proceedings of Institutional Mechanic Engineering Part E Journal of Process Mechanic Engineering, 232, 165–172. https://doi.org/10.1177/0954408916686998

    Article  Google Scholar 

  98. Chen, C., Zhao, S., Cui, M., et al. (2017). Effects of geometrical parameters on the strength and energy absorption of the height-reduced joint. International Journal of Advanced Manufacturing Technology, 90, 3533–3541. https://doi.org/10.1007/s00170-016-9619-8

    Article  Google Scholar 

  99. Chen, C., Zhao, S., Han, X., et al. (2016). Investigation of mechanical behavior of the reshaped joints realized with different reshaping forces. Thin-Walled Structuring, 107, 266–273. https://doi.org/10.1016/j.tws.2016.06.020

    Article  Google Scholar 

  100. Chen, C., Zhao, S., Han, X., et al. (2017). Investigation of the height-reducing method for clinched joint with AL5052 and AL6061. International Journal of Advanced Manufacturing Technology, 89, 2269–2276. https://doi.org/10.1007/s00170-016-9266-0

    Article  Google Scholar 

  101. Chen, C., Zhao, S., Han, X., et al. (2016). Optimization of a reshaping rivet to reduce the protrusion height and increase the strength of clinched joints. Journal of Materials Processing Technology, 234, 1–9. https://doi.org/10.1016/j.jmatprotec.2016.03.006

    Article  Google Scholar 

  102. Chen, C., Zhao, S., Han, X., et al. (2017). Experimental investigation of the mechanical reshaping process for joining aluminum alloy sheets with different thicknesses. Journal of Manufacturing Processes, 26, 105–112. https://doi.org/10.1016/j.jmapro.2017.01.015

    Article  Google Scholar 

  103. Chen, C., Zhao, S., Han, X., et al. (2017). Investigation of flat clinching process combined with material forming technology for aluminum alloy. Materials (Basel), 10, 1433. https://doi.org/10.3390/ma10121433

    Article  Google Scholar 

  104. Chen, C., Zhao, S., Han, X., et al. (2017). Experimental investigation on the joining of aluminum alloy sheets using improved clinching process. Materials (Basel), 10, 887. https://doi.org/10.3390/ma10080887

    Article  Google Scholar 

  105. Chen, C., Ishida, T., Wang, Y., et al. (2018). Numerical and experimental investigations of the two-step clinching process with a bumped die. Journal of Advanced Mechanic Design System of Manufacturing, 12, JAMDSM0109. https://doi.org/10.1299/jamdsm.2018jamdsm0109

    Article  Google Scholar 

  106. He, X., Gu, F., & Ball, A. (2013). Fatigue behaviour of fastening joints of sheet materials and finite element analysis. Advances in Mechanical Engineering, 5, 658219. https://doi.org/10.1155/2013/658219

    Article  Google Scholar 

  107. Kim, H. K. (2013). Fatigue strength evaluation of the clinched lap joints of a cold rolled mild steel sheet. Journal of Materials Engineering and Performance, 22, 294–299. https://doi.org/10.1007/s11665-012-0232-1

    Article  Google Scholar 

  108. Carboni, M., Beretta, S., & Monno, M. (2006). Fatigue behaviour of tensile-shear loaded clinched joints. Engineering Fracture Mechanics, 73, 178–190. https://doi.org/10.1016/j.engfracmech.2005.04.004

    Article  Google Scholar 

  109. Neugebauer, R., Kraus, C., & Dietrich, S. (2008). Advances in mechanical joining of magnesium. CIRP Annals, 57, 283–286. https://doi.org/10.1016/j.cirp.2008.03.025

    Article  Google Scholar 

  110. Sabra Atia, M. K., & Jain, M. K. (2017). Die-less clinching process and joint strength of AA7075 aluminum joints. Thin-Walled Structuring, 120, 421–431. https://doi.org/10.1016/j.tws.2017.06.021

    Article  Google Scholar 

  111. Sabra Atia, M. K., & Jain, M. K. (2018). A parametric study of FE modeling of die-less clinching of AA7075 aluminum sheets. Thin-Walled Structuring, 132, 717–728. https://doi.org/10.1016/j.tws.2018.09.001

    Article  Google Scholar 

  112. Atia, M. K. S., & Jain, M. K. (2020). A novel approach to hot die-less clinching process for high strength AA7075-T6 sheets. Proceedings of the Institution of Mechanical Engineers Part C Journal of Machine Engineering Science, 234, 3809–3825. https://doi.org/10.1177/0954406220917406

    Article  Google Scholar 

  113. Lüder, S., Härtel, S., Binotsch, C., & Awiszus, B. (2014). Influence of the moisture content on flat-clinch connection of wood materials and aluminium. Journal of Materials Processing Technology, 214, 2069–2074. https://doi.org/10.1016/j.jmatprotec.2014.01.010

    Article  Google Scholar 

  114. Gerstmann, T., & Awiszus, B. (2020). Hybrid joining: Numerical process development of flat-clinch-bonding. Journal of Materials Processing Technology, 277, 116421. https://doi.org/10.1016/j.jmatprotec.2019.116421

    Article  Google Scholar 

  115. Gerstmann, T., & Awiszus, B. (2014). Recent developments in flat-clinching. Computational Materials Science, 81, 39–44. https://doi.org/10.1016/j.commatsci.2013.07.013

    Article  Google Scholar 

  116. Lee, S. H., Lee, C. J., Lee, K. H., et al. (2014). Influence of tool shape on hole clinching for carbon fiber-reinforced plastic and SPRC440. Advances in Mechanical Engineering. https://doi.org/10.1155/2014/810864

    Article  Google Scholar 

  117. Liu, Y., Zhuang, W., & Wu, S. (2020). Damage to carbon fibre reinforced polymers (CFRP) in hole-clinched joints with aluminium alloy and CFRP. Composite Structures, 234, 111710. https://doi.org/10.1016/j.compstruct.2019.111710

    Article  Google Scholar 

  118. Chen, L. W., & Cai, M. J. (2018). Development of a hot stamping clinching tool. Journal of Manufacturing Processes, 34, 650–658. https://doi.org/10.1016/j.jmapro.2018.06.022

    Article  Google Scholar 

  119. Wang, X., Ji, Z., Wang, J., et al. (2018). An experimental and numerical study on laser shock clinching for joining copper foil and perforated stainless steel sheet. Journal of Materials Processing Technology, 258, 155–164. https://doi.org/10.1016/j.jmatprotec.2018.03.025

    Article  Google Scholar 

  120. Wang, X., Li, X., Li, C., et al. (2018). Laser shock micro clinching of Al/Cu. Journal of Materials Processing Technology, 258, 200–210. https://doi.org/10.1016/j.jmatprotec.2018.04.005

    Article  Google Scholar 

  121. Wang, X., Ji, Z., Liu, R., & Zheng, C. (2018). Making interlock by laser shock forming. Optics & Laser Technology, 107, 331–336. https://doi.org/10.1016/j.optlastec.2018.06.011

    Article  Google Scholar 

  122. Hiller, M., & Volk, W. (2015). Joining aluminium alloy and mild steel sheets by roller clinching. Applied Mechanics and Materials, 794, 295–303. https://doi.org/10.4028/www.scientific.net/AMM.794.295

    Article  Google Scholar 

  123. Hiller, M., Vitzthum, S., Hacker, M., et al. (2018). Numerical analysis of the scalability of roller clinching processes. Key Engineering Materials, 767, 377–385. https://doi.org/10.4028/www.scientific.net/KEM.767.377

    Article  Google Scholar 

  124. Lin, P. C., Lo, S. M., & Wu, S. P. (2018). Fatigue life estimations of alclad AA2024-T3 friction stir clinch joints. International Journal of Fatigue, 107, 13–26. https://doi.org/10.1016/j.ijfatigue.2017.10.011

    Article  Google Scholar 

  125. Paidar, M., Ghavamian, S., Ojo, O. O., et al. (2019). Modified friction stir clinching of dissimilar AA2024-T3 to AA7075-T6: Effect of tool rotational speed and penetration depth. Journal of Manufacturing Processes, 47, 157–171. https://doi.org/10.1016/j.jmapro.2019.09.028

    Article  Google Scholar 

  126. Paidar, M., Ojo, O. O., Moghanian, A., et al. (2019). Modified friction stir clinching with protuberance-keyhole levelling: A process for production of welds with high strength. Journal of Manufacturing Processes, 41, 177–187. https://doi.org/10.1016/j.jmapro.2019.03.030

    Article  Google Scholar 

  127. Lambiase, F., & Di Ilio, A. (2016). Damage analysis in mechanical clinching: Experimental and numerical study. Journal of Materials Processing Technology, 230, 109–120. https://doi.org/10.1016/j.jmatprotec.2015.11.013

    Article  Google Scholar 

  128. Lambiase, F., & Di Ilio, A. (2013). Optimization of the clinching tools by means of integrated FE modeling and artificial intelligence techniques. Procedia CIRP, 12, 163–168. https://doi.org/10.1016/j.procir.2013.09.029

    Article  Google Scholar 

  129. Dean, A., Sahraee, S., Reinoso, J., & Rolfes, R. (2016). Finite deformation model for short fiber reinforced composites: Application to hybrid metal-composite clinching joints. Composite Structures, 151, 162–171. https://doi.org/10.1016/j.compstruct.2016.02.045

    Article  Google Scholar 

  130. Roux, E., & Bouchard, P. O. (2013). Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. Journal of Materials Processing Technology, 213, 1038–1047. https://doi.org/10.1016/j.jmatprotec.2013.01.018

    Article  Google Scholar 

  131. Zhao, S. D., Xu, F., Guo, J. H., & Han, X. L. (2014). Experimental and numerical research for the failure behavior of the clinched joint using modified Rousselier model. Journal of Materials Processing Technology, 214, 2134–2145. https://doi.org/10.1016/j.jmatprotec.2014.03.013

    Article  Google Scholar 

  132. Breda, A., Coppieters, S., & Debruyne, D. (2017). Equivalent modelling strategy for a clinched joint using a simple calibration method. Thin-Walled Structuring, 113, 1–12. https://doi.org/10.1016/j.tws.2016.12.002

    Article  Google Scholar 

  133. Ali, B., & Benabderrahmane, B. (2017). Finite element simulation of the hybrid clinch joining. International Journal of Advanced Manufacturing Technology, 89, 439–449. https://doi.org/10.1007/s00170-016-9094-2

    Article  Google Scholar 

  134. Berezhnoi, D. V., & Shamim, M. R. (2017). Numerical Investigation of Clinch Connection Manufacturing Process. Procedia Engineering (pp. 1056–1062). Amsterdam: Elsevier.

    Google Scholar 

  135. Hamel, V., Roelandt, J. M., Gacel, J. N., & Schmit, F. (2000). Finite element modeling of clinch forming with automatic remeshing. Computers & Structures, 77, 185–200. https://doi.org/10.1016/S0045-7949(99)00207-2

    Article  Google Scholar 

  136. Coppieters, S., Lava, P., Baes, S., et al. (2012). Analytical method to predict the pull-out strength of clinched connections. Thin-Walled Structuring, 52, 42–52. https://doi.org/10.1016/j.tws.2011.12.002

    Article  Google Scholar 

  137. Behrens, B. A., Bouguecha, A., Vucetic, M., et al. (2015). FEA-based optimisation of a clinching process with a closed single-part die aimed at damage minimization in CR240BH-AlSi10MnMg joints. Key Engineering Materials, 651–653, 1487–1492. https://doi.org/10.4028/www.scientific.net/KEM.651-653.1487

    Article  Google Scholar 

  138. Breda, A., Coppieters, S., Kuwabara, T., & Debruyne, D. (2019). The effect of plastic anisotropy on the calibration of an equivalent model for clinched connections. Thin-Walled Structuring, 145, 106360. https://doi.org/10.1016/j.tws.2019.106360

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by School of Mechanical Engineering, Xiangtan University. This research work is financially supported by the National Natural Science Foundation of China (Grant No. 51901199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Ethics declarations

Conflict of interest

All authors have contributed to, read, and approved the manuscript in its current form and there are no conflicts of interest to declare. We declare that none of the work contained in this manuscript has been published in any language, nor is it currently under consideration by any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, H., Peng, R. et al. The State of the Art of Finite Element Analysis in Mechanical Clinching. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1191–1214 (2022). https://doi.org/10.1007/s40684-021-00366-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00366-z

Keywords

Navigation