Skip to main content
Log in

Interfacial Solar Evaporator - Physical Principles and Fabrication Methods

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Production of fresh water based on a renewable energy source is one of the most important global challenges for mankind due to ever-accelerating climate changes. Solar thermal evaporation shows promise for overcoming the water scarcity problem by utilizing solar energy, the most abundant and clean energy source. To enhance the performance of solar evaporators, interfacial solar evaporators have been introduced, which harness solar energy onto the water surface. To enable energy conversion and water evaporation at the interfaces of a solar evaporator, multi-scale heat and water transport have been investigated. Furthermore, various light-absorbing materials and system configurations have been studied to achieve the theoretical maximum performance. The fundamental physics of the interfacial solar evaporator, including thermal and water transport, and a broad range of interfacial solar evaporator devices in terms of the fabrication techniques and its structures are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Copyright 2014, John Wiley and Sons. b Schematic diagram and structural images of hydrogel-based interfacial solar evaporator. Adapted with permission [69]. Copyright 2018, Royal Society of Chemistry. c SEM images and schematic illustration of TiOx nanoparticles coated solar evaporator. Adapted with permission [26]. Copyright 2017, John Wiley and Sons. d Carbon based evaporator fabricated by ablation of porous polyimide foam with a CO2 laser. Adapted with permission [80]. Copyright 2020, Elsevier

Fig. 7

Copyright 2018, John Wiley and Sons b Interfacial solar evaporator with patterned carbon black on air-laid paper. Adapted with permission [105]. Copyright 2019, American Chemical Society. c Interfacial solar evaporator imitating a jellyfish. Adapted with permission [107]. Copyright 2020, Elsevier. d TiN coated on anodic aluminum oxide templates. Adapted with permission [115]. Copyright 2019, John Wiley and Sons

Fig. 8

Copyright 2018, Elsevier. b Origami-based solar interfacial evaporator using Miura-ori tessellation. Adapted with permission [118]. Copyright 2018, American Chemical Society. c The hollow cylindrical shape evaporator which can re-absorb light and heat. Adapted with permission [122]. Copyright 2018, Elsevier. d Kirigami-based 3D spiral evaporator. Adapted with permission [123]. Copyright 2021, Elsevier. e Panel-shape evaporator with bifaciality. Adapted with permission [49]. Copyright 2020, Springer Nature. f Carbonized mushroom as efficient interfacial solar evaporators. Adapted with permission [125]. Copyright 2017, John Wiley and Sons

Fig. 9

Similar content being viewed by others

References

  1. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310.

    Article  Google Scholar 

  2. Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., et al. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3245–3250.

    Article  Google Scholar 

  3. Dalvi, V. H., Panse, S. V., & Joshi, J. B. (2015). Solar thermal technologies as a bridge from fossil fuels to renewables. Nature Climate Change, 5(11), 1007–1013.

    Article  Google Scholar 

  4. Lewis, N. S. (2007). Toward cost-effective solar energy use. Science, 315(5813), 798–801.

    Article  Google Scholar 

  5. Lewis, N. S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271), 1920.

    Article  Google Scholar 

  6. Qiblawey, H. M., & Banat, F. (2008). Solar thermal desalination technologies. Desalination, 220(1), 633–644.

    Article  Google Scholar 

  7. Li, C., Goswami, Y., & Stefanakos, E. (2013). Solar assisted sea water desalination: A review. Renewable and Sustainable Energy Reviews, 19, 136–163.

    Article  Google Scholar 

  8. Thirugnanasambandam, M., Iniyan, S., & Goic, R. (2010). A review of solar thermal technologies. Renewable & Sustainable Energy Reviews, 14(1), 312–322.

    Article  Google Scholar 

  9. Kabeel, A. E., & El-Agouz, S. A. (2011). Review of researches and developments on solar stills. Desalination, 276(1), 1–12.

    Article  Google Scholar 

  10. Rufuss, D. W. D., Iniyan, S., Suganthi, L., & Davies, P. A. (2016). Solar stills: A comprehensive review of designs, performance and material advances. Renewable and Sustainable Energy Reviews, 63, 464–496.

    Article  Google Scholar 

  11. Hale, G. M., & Querry, M. R. (1973). Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics, 12(3), 555–563.

    Article  Google Scholar 

  12. Neumann, O., Urban, A. S., Day, J., Lal, S., Nordlander, P., & Halas, N. J. (2013). Solar vapor generation enabled by nanoparticles. ACS Nano, 7(1), 42–49.

    Article  Google Scholar 

  13. Ni, G., Miljkovic, N., Ghasemi, H., Huang, X., Boriskina, S. V., Lin, C.-T., et al. (2015). Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy, 17, 290–301.

    Article  Google Scholar 

  14. Jin, H., Lin, G., Bai, L., Zeiny, A., & Wen, D. (2016). Steam generation in a nanoparticle-based solar receiver. Nano Energy, 28, 397–406.

    Article  Google Scholar 

  15. Ghasemi, H., Ni, G., Marconnet, A. M., Loomis, J., Yerci, S., Miljkovic, N., et al. (2014). Solar steam generation by heat localization. Nature Communications, 5, 4449.

    Article  Google Scholar 

  16. Wang, Z., Liu, Y., Tao, P., Shen, Q., Yi, N., Zhang, F., et al. (2014). Bio-inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small (Weinheim an der Bergstrasse, Germany), 10(16), 3234–3239.

    Article  Google Scholar 

  17. Li, X., Xu, W., Tang, M., Zhou, L., Zhu, B., Zhu, S., et al. (2016). Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences of the United States of America, 113(49), 13953–13958.

    Article  Google Scholar 

  18. Bond, T. C., & Bergstrom, R. W. (2006). Light absorption by carbonaceous particles: An investigative review. Aerosol Science and Technology, 40(1), 27–67.

    Article  Google Scholar 

  19. Zhou, W., y., Xie, S. s., Qian, S. f., Zhou, T., Zhao, R. a., Wang, G., , et al. (1996). Optical absorption spectra of C70 thin films. Journal of Applied Physics, 80(1), 459–463.

    Article  Google Scholar 

  20. Zhang, L., Tang, B., Wu, J., Li, R., & Wang, P. (2015). Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Advanced Materials, 27(33), 4889–4894.

    Article  Google Scholar 

  21. Li, C., Jiang, D., Huo, B., Ding, M., Huang, C., Jia, D., et al. (2019). Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy, 60, 841–849.

    Article  Google Scholar 

  22. Jiang, Q., Gholami Derami, H., Ghim, D., Cao, S., Jun, Y.-S., & Singamaneni, S. (2017). Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. Journal of Materials Chemistry A, 5(35), 18397–18402.

    Article  Google Scholar 

  23. Meyer, J. R., Bartoli, F. J., & Kruer, M. R. (1980). Optical heating in semiconductors. Physical Review B, 21(4), 1559–1568.

    Article  Google Scholar 

  24. Umlauff, M., Hoffmann, J., Kalt, H., Langbein, W., Hvam, J. M., Scholl, M., et al. (1998). Direct observation of free-exciton thermalization in quantum-well structures. Physical Review B, 57(3), 1390–1393.

    Article  Google Scholar 

  25. Zhu, G., Xu, J., Zhao, W., & Huang, F. (2016). Constructing black titania with unique nanocage structure for solar desalination. ACS Applied Materials & Interfaces, 8(46), 31716–31721.

    Article  Google Scholar 

  26. Ye, M., Jia, J., Wu, Z., Qian, C., Chen, R., O’Brien, P. G., et al. (2017). Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Advanced Energy Materials, 7(4), 1601811.

    Article  Google Scholar 

  27. Wang, J., Li, Y., Deng, L., Wei, N., Weng, Y., Dong, S., et al. (2017). High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Advanced Materials, 29(3), 1603730.

    Article  Google Scholar 

  28. Liu, X., Cheng, H., Guo, Z., Zhan, Q., Qian, J., & Wang, X. (2018). Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. ACS Applied Materials & Interfaces, 10(46), 39661–39669.

    Article  Google Scholar 

  29. Guo, Y., Zhao, X., Zhao, F., Jiao, Z., Zhou, X., & Yu, G. (2020). Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy & Environmental Science, 13(7), 2087–2095.

    Article  Google Scholar 

  30. Xu, N., Li, J., Wang, Y., Fang, C., Li, X., Wang, Y., et al. (2019). A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Science Advances, 5(7), 7013.

    Article  Google Scholar 

  31. Zhang, C., Yan, C., Xue, Z., Yu, W., Xie, Y., & Wang, T. (2016). Shape-controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation. Small (Weinheim an der Bergstrasse, Germany), 12(38), 5320–5328.

    Article  Google Scholar 

  32. Yu, F., Guo, Z., Xu, Y., Chen, Z., Irshad, M. S., Qian, J., et al. (2020). Biomass-derived bilayer solar evaporator with enhanced energy utilization for high-efficiency water generation. ACS Applied Materials & Interfaces, 12(51), 57155–57164.

    Article  Google Scholar 

  33. Huang, W., Su, P., Cao, Y., Li, C., Chen, D., Tian, X., et al. (2020). Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation. Nano Energy, 69, 104465.

    Article  Google Scholar 

  34. Ding, D., Huang, W., Song, C., Yan, M., Guo, C., & Liu, S. (2017). Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications, 53(50), 6744–6747.

    Article  Google Scholar 

  35. Pelton, M., Aizpurua, J., & Bryant, G. (2008). Metal-nanoparticle plasmonics. Laser & Photonics Reviews, 2(3), 136–159.

    Article  Google Scholar 

  36. Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., et al. (2016). Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2(4), e1501227.

    Article  Google Scholar 

  37. Sáenz, P. J., Wray, A. W., Che, Z., Matar, O. K., Valluri, P., Kim, J., et al. (2017). Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nature Communications, 8, 14783.

    Article  Google Scholar 

  38. Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1987). The properties of gases and liquids. McGraw Hill.

    Google Scholar 

  39. Weinbaum, S. (1964). Natural convection in a horizontal circular cylinder. Journal of Fluid Mechanics, 18(3), 409–437.

    Article  MathSciNet  MATH  Google Scholar 

  40. Howard, L. N. (1963). Heat transport by turbulent convection. Journal of Fluid Mechanics, 17(3), 405–432.

    Article  MathSciNet  MATH  Google Scholar 

  41. Lloyd, J. R., Sparrow, E. M., & Eckert, E. R. G. (1972). Laminar, transition and turbulent natural convection adjacent to inclined and vertical surfaces. International Journal of Heat and Mass Transfer, 15(3), 457–473.

    Article  Google Scholar 

  42. Fujii, T., & Imura, H. (1972). Natural-convection heat transfer from a plate with arbitrary inclination. International Journal of Heat and Mass Transfer, 15(4), 755–767.

    Article  Google Scholar 

  43. Kaya, A., Aydın, O., & Dincer, I. (2006). Numerical modeling of heat and mass transfer during forced convection drying of rectangular moist objects. International Journal of Heat and Mass Transfer, 49(17), 3094–3103.

    Article  MATH  Google Scholar 

  44. Goldstein, R. J., Sparrow, E. M., & Jones, D. C. (1973). Natural convection mass transfer adjacent to horizontal plates. International Journal of Heat and Mass Transfer, 16(5), 1025–1035.

    Article  Google Scholar 

  45. Bowen, I. S. (1926). The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27(6), 779–787.

    Article  MATH  Google Scholar 

  46. Elango, C., Gunasekaran, N., & Sampathkumar, K. (2015). Thermal models of solar still: A comprehensive review. Renewable and Sustainable Energy Reviews, 47, 856–911.

    Article  Google Scholar 

  47. Yu, Z., Cheng, S., Li, C., Li, L., & Yang, J. (2019). Highly efficient solar vapor generator enabled by a 3D hierarchical structure constructed with hydrophilic carbon felt for desalination and wastewater treatment. ACS Applied Materials & Interfaces, 11(35), 32038–32045.

    Article  Google Scholar 

  48. Li, X., Li, J., Lu, J., Xu, N., Chen, C., Min, X., et al. (2018). Enhancement of interfacial solar vapor generation by environmental energy. Joule, 2(7), 1331–1338.

    Article  Google Scholar 

  49. Singh, S. C., ElKabbash, M., Li, Z., Li, X., Regmi, B., Madsen, M., et al. (2020). Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nature Sustainability, 3(11), 938–946.

    Article  Google Scholar 

  50. Miyazaki, M., Fujii, A., Ebata, T., & Mikami, N. (2004). Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science, 304(5674), 1134–1137.

    Article  Google Scholar 

  51. Fujii, A., & Mizuse, K. (2013). Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters. International Reviews in Physical Chemistry, 32(2), 266–307.

    Article  Google Scholar 

  52. Zhao, Y., Zhao, K., Yin, J., Yang, J., Xu, J., Gu, Y., et al. (2019). A nanopump for low-temperature and efficient solar water evaporation. Journal of Materials Chemistry A, 7(42), 24311–24319.

    Article  Google Scholar 

  53. Guan, Q.-F., Han, Z.-M., Ling, Z.-C., Yang, H.-B., & Yu, S.-H. (2020). Sustainable wood-based hierarchical solar steam generator: A biomimetic design with reduced vaporization enthalpy of water. Nano Letters, 20(8), 5699–5704.

    Article  Google Scholar 

  54. Zhao, F., Zhou, X., Shi, Y., Qian, X., Alexander, M., Zhao, X., et al. (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 13(6), 489–495.

    Article  Google Scholar 

  55. Zhou, X., Zhao, F., Guo, Y., Rosenberger, B., & Yu, G. (2019). Architecting highly hydratable polymer networks to tune the water state for solar water purification. Science Advances, 5(6), 5484.

    Article  Google Scholar 

  56. Ni, G., Li, G., Boriskina, S. V., Li, H., Yang, W., Zhang, T., et al. (2016). Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 1(9), 16126.

    Article  Google Scholar 

  57. Kobus, C. J., & Wedekind, G. L. (2001). An experimental investigation into natural convection heat transfer from horizontal isothermal circular disks. International Journal of Heat and Mass Transfer, 44(17), 3381–3384.

    Article  Google Scholar 

  58. Al-Arabi, M., & El-Riedy, M. K. (1976). Natural convection heat transfer from isothermal horizontal plates of different shapes. International Journal of Heat and Mass Transfer, 19(12), 1399–1404.

    Article  Google Scholar 

  59. Globe, S., & Dropkin, D. (1959). Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below. Journal of Heat Transfer, 81(1), 24–28.

    Article  Google Scholar 

  60. Bauer, T. H. (1993). A general analytical approach toward the thermal conductivity of porous media. International Journal of Heat and Mass Transfer, 36(17), 4181–4191.

    Article  MATH  Google Scholar 

  61. Rayleigh, L. (1892). LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(211), 481–502.

    Article  MATH  Google Scholar 

  62. Wang, X., Zhai, Z., Chen, Y., & Jiang, H. (2018). A facile, robust and versatile finite element implementation to study the time-dependent behaviors of responsive gels. Extreme Mechanics Letters, 22, 89–97.

    Article  Google Scholar 

  63. Tang, N., Peng, Z., Guo, R., An, M., Chen, X., Li, X., et al. (2017). Thermal transport in soft PAAm hydrogels. Polymers, 9(12), 688.

    Article  Google Scholar 

  64. Hassani, A. V., & Hollands, K. G. T. (1987). A simplified method for estimating natural convection heat transfer from bodies of arbitrary shape. In Proceedings of the 24th National Heat Transfer Conference (p. 12).

  65. Welty, J., Rorrer, G. L., & Foster, D. G. (2020). Fundamentals of momentum, heat, and mass transfer. Wiley.

    Google Scholar 

  66. Zeng, Y., Yao, J., Horri, B. A., Wang, K., Wu, Y., Li, D., et al. (2011). Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy & Environmental Science, 4(10), 4074–4078.

    Article  Google Scholar 

  67. Zeng, Y., Wang, K., Yao, J., & Wang, H. (2014). Hollow carbon beads for significant water evaporation enhancement. Chemical Engineering Science, 116, 704–709.

    Article  Google Scholar 

  68. Chen, R., Wu, Z., Zhang, T., Yu, T., & Ye, M. (2017). Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Advances, 7(32), 19849–19855.

    Article  Google Scholar 

  69. Zhou, X., Zhao, F., Guo, Y., Zhang, Y., & Yu, G. (2018). A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy & Environmental Science, 11(8), 1985–1992.

    Article  Google Scholar 

  70. Ma, S., Chiu, C. P., Zhu, Y., Tang, C. Y., Long, H., Qarony, W., et al. (2017). Recycled waste black polyurethane sponges for solar vapor generation and distillation. Applied Energy, 206, 63–69.

    Article  Google Scholar 

  71. Lu, Y., Dai, T., Fan, D., Min, H., Ding, S., & Yang, X. (2020). Turning trash into treasure: Pencil waste-derived materials for solar-powered water evaporation. Energy Technology, 8(10), 2000567.

    Article  Google Scholar 

  72. Hu, X., Xu, W., Zhou, L., Tan, Y., Wang, Y., Zhu, S., et al. (2017). Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 29(5), 1604031.

    Article  Google Scholar 

  73. Lin, X., Chen, J., Yuan, Z., Yang, M., Chen, G., Yu, D., et al. (2018). Integrative solar absorbers for highly efficient solar steam generation. Journal of Materials Chemistry A, 6(11), 4642–4648.

    Article  Google Scholar 

  74. Hua, Z., Li, B., Li, L., Yin, X., Chen, K., & Wang, W. (2017). Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. The Journal of Physical Chemistry C, 121(1), 60–69.

    Article  Google Scholar 

  75. Lou, J., Liu, Y., Wang, Z., Zhao, D., Song, C., Wu, J., et al. (2016). Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Applied Materials & Interfaces, 8(23), 14628–14636.

    Article  Google Scholar 

  76. Chang, C., Yang, C., Liu, Y., Tao, P., Song, C., Shang, W., et al. (2016). Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Applied Materials & Interfaces, 8(35), 23412–23418.

    Article  Google Scholar 

  77. Liu, Y., Yu, S., Feng, R., Bernard, A., Liu, Y., Zhang, Y., et al. (2015). A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Advanced Materials, 27(17), 2768–2774.

    Article  Google Scholar 

  78. Wang, X., He, Y., Liu, X., Cheng, G., & Zhu, J. (2017). Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Applied Energy, 195, 414–425.

    Article  Google Scholar 

  79. Bae, K., Kang, G., Cho, S. K., Park, W., Kim, K., & Padilla, W. J. (2015). Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 6, 10103.

    Article  Google Scholar 

  80. Kim, M., Yang, K., Kim, Y. S., Won, J. C., Kang, P., Kim, Y. H., et al. (2020). Laser-induced photothermal generation of flexible and salt-resistant monolithic bilayer membranes for efficient solar desalination. Carbon, 164, 349–356.

    Article  Google Scholar 

  81. Han, D.-D., Chen, Z.-D., Li, J.-C., Mao, J.-W., Jiao, Z.-Z., Wang, W., et al. (2020). Airflow enhanced solar evaporation based on Janus graphene membranes with stable interfacial floatability. ACS Applied Materials & Interfaces, 12(22), 25435–25443.

    Article  Google Scholar 

  82. Wang, G., Fu, Y., Guo, A., Mei, T., Wang, J., Li, J., et al. (2017). Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chemistry of Materials, 29(13), 5629–5635.

    Article  Google Scholar 

  83. Liu, X., Hou, B., Wang, G., Cui, Z., Zhu, X., & Wang, X. (2018). Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. Journal of Materials Research, 33(6), 674–684.

    Article  Google Scholar 

  84. Li, J., Du, M., Lv, G., Zhou, L., Li, X., Bertoluzzi, L., et al. (2018). Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Advanced Materials, 30(49), 1805159.

    Article  Google Scholar 

  85. Liu, Y., Chen, J., Guo, D., Cao, M., & Jiang, L. (2015). Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS Applied Materials & Interfaces, 7(24), 13645–13652.

    Article  Google Scholar 

  86. Li, T., Liu, H., Zhao, X., Chen, G., Dai, J., Pastel, G., et al. (2018). Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Advanced Functional Materials, 28(16), 1707134.

    Article  Google Scholar 

  87. Zhang, Z., Wang, Y., Stensby Hansen, P. A., Du, K., Gustavsen, K. R., Liu, G., et al. (2019). Black silicon with order-disordered structures for enhanced light trapping and photothermic conversion. Nano Energy, 65, 103992.

    Article  Google Scholar 

  88. Kim, J. U., Kang, S. J., Lee, S., Ok, J., Kim, Y., Roh, S. H., et al. (2020). Omnidirectional, broadband light absorption in a hierarchical nanoturf membrane for an advanced solar-vapor generator. Advanced Functional Materials, 30(50), 2003862.

    Article  Google Scholar 

  89. Wu, D., Qu, D., Jiang, W., Chen, G., An, L., Zhuang, C., et al. (2019). Self-floating nanostructured Ni–NiOx/Ni foam for solar thermal water evaporation. Journal of Materials Chemistry A, 7(14), 8485–8490.

    Article  Google Scholar 

  90. Ghim, D., Jiang, Q., Cao, S., Singamaneni, S., & Jun, Y.-S. (2018). Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy, 53, 949–957.

    Article  Google Scholar 

  91. Hu, H., Wang, Z., Ye, Q., He, J., Nie, X., He, G., et al. (2016). Substrateless welding of self-assembled silver nanowires at air/water interface. ACS Applied Materials & Interfaces, 8(31), 20483–20490.

    Article  Google Scholar 

  92. Guo, Z., Wang, G., Ming, X., Mei, T., Wang, J., Li, J., et al. (2018). PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization. ACS Applied Materials & Interfaces, 10(29), 24583–24589.

    Article  Google Scholar 

  93. Liu, H., Chen, C., Wen, H., Guo, R., Williams, N. A., Wang, B., et al. (2018). Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry A, 6(39), 18839–18846.

    Article  Google Scholar 

  94. Zhang, X.-F., Wang, Z., Song, L., Feng, Y., & Yao, J. (2020). Chinese ink enabled wood evaporator for continuous water desalination. Desalination, 496, 114727.

    Article  Google Scholar 

  95. Chen, C., Li, Y., Song, J., Yang, Z., Kuang, Y., Hitz, E., et al. (2017). Highly flexible and efficient solar steam generation device. Advanced Materials, 29(30), 1701756.

    Article  Google Scholar 

  96. Liu, K.-K., Jiang, Q., Tadepallifit, S., Raliya, R., Biswas, P., Naik, R. R., et al. (2017). Wood graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 9(8), 7675–7681.

    Article  Google Scholar 

  97. Zhang, H., Li, L., Jiang, B., Zhang, Q., Ma, J., Tang, D., et al. (2020). Highly thermally insulated and superhydrophilic corn straw for efficient solar vapor generation. ACS Applied Materials & Interfaces, 12(14), 16503–16511.

    Article  Google Scholar 

  98. Liu, H., Chen, C., Chen, G., Kuang, Y., Zhao, X., Song, J., et al. (2018). High-performance solar steam device with layered channels: Artificial tree with a reversed design. Advanced Energy Materials, 8(8), 89.

    Article  Google Scholar 

  99. Xue, G., Liu, K., Chen, Q., Yang, P., Li, J., Ding, T., et al. (2017). Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Applied Materials & Interfaces, 9(17), 15052–15057.

    Article  Google Scholar 

  100. Zhu, M., Li, Y., Chen, G., Jiang, F., Yang, Z., Luo, X., et al. (2017). Tree-inspired design for high-efficiency water extraction. Advanced Materials, 29(44), 1704107.

    Article  Google Scholar 

  101. Kuang, Y., Chen, C., He, S., Hitz, E. M., Wang, Y., Gan, W., et al. (2019). A high-performance self-regenerating solar evaporator for continuous water desalination. Advanced Materials, 31(23), 1900498.

    Article  Google Scholar 

  102. Song, H., Liu, Y., Liu, Z., Singer, M. H., Li, C., Cheney, A. R., et al. (2018). Cold vapor generation beyond the input solar energy limit. Advanced Science, 5(8), 1800222.

    Article  Google Scholar 

  103. Liu, Z., Song, H., Ji, D., Li, C., Cheney, A., Liu, Y., et al. (2017). Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges, 1(2), 1600003.

    Article  Google Scholar 

  104. Wang, X., Gan, Q., Chen, R., Peng, H., Zhang, T., & Ye, M. (2020). Water delivery channel design in solar evaporator for efficient and durable water evaporation with salt rejection. ACS Sustainable Chemistry & Engineering, 8(21), 7753–7761.

    Article  Google Scholar 

  105. Luo, Y., Fu, B., Shen, Q., Hao, W., Xu, J., Min, M., et al. (2019). Patterned surfaces for solar-driven interfacial evaporation. ACS Applied Materials & Interfaces, 11(7), 7584–7590.

    Article  Google Scholar 

  106. Liu, P.-F., Miao, L., Deng, Z., Zhou, J., Su, H., Sun, L., et al. (2018). A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-sun. Materials Today Energy, 8, 166–173.

    Article  Google Scholar 

  107. Qi, Q., Wang, Y., Wang, W., Ding, X., & Yu, D. (2020). High-efficiency solar evaporator prepared by one-step carbon nanotubes loading on cotton fabric toward water purification. Science of The Total Environment, 698, 134136.

    Article  Google Scholar 

  108. Li, Y., Gao, T., Yang, Z., Chen, C., Luo, W., Song, J., et al. (2017). 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 Sun illumination. Advanced Materials, 29(26), 1700981.

    Article  Google Scholar 

  109. Wang, Z., Ye, Q., Liang, X., Xu, J., Chang, C., Song, C., et al. (2017). Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry A, 5(31), 16359–16368.

    Article  Google Scholar 

  110. Li, Y., Gao, T., Yang, Z., Chen, C., Kuang, Y., Song, J., et al. (2017). Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 41, 201–209.

    Article  Google Scholar 

  111. Ito, Y., Tanabe, Y., Han, J., Fujita, T., Tanigaki, K., & Chen, M. (2015). Multifunctional porous graphene for high-efficiency steam generation by heat localization. Advanced Materials, 27(29), 4302–4307.

    Article  Google Scholar 

  112. Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., et al. (2016). 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 10(6), 393–398.

    Article  Google Scholar 

  113. Zhu, M., Li, Y., Chen, F., Zhu, X., Dai, J., Li, Y., et al. (2018). Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 8(4), 1701028.

    Article  Google Scholar 

  114. Wang, X., Hsieh, M. L., Bur, J. A., Lin, S. Y., & Narayanan, S. (2020). Capillary-driven solar-thermal water desalination using a porous selective absorber. Materials Today Energy, 17, 100453.

    Article  Google Scholar 

  115. Kaur, M., Ishii, S., Shinde, S. L., & Nagao, T. (2019). All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Advanced Sustainable Systems, 3(2), 1800112.

    Article  Google Scholar 

  116. Li, Z., Zheng, M., Wei, N., Lin, Y., Chu, W., Xu, R., et al. (2020). Broadband-absorbing WO3-x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation. Solar Energy Materials and Solar Cells, 205, 110254.

    Article  Google Scholar 

  117. Zhang, P., Liao, Q., Yao, H., Cheng, H., Huang, Y., Yang, C., et al. (2018). Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. Journal of Materials Chemistry A, 6(31), 15303–15309.

    Article  Google Scholar 

  118. Hong, S., Shi, Y., Li, R., Zhang, C., Jin, Y., & Wang, P. (2018). Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Applied Materials & Interfaces, 10(34), 28517–28524.

    Article  Google Scholar 

  119. Li, W., Li, Z., Bertelsmann, K., & Fan, D. E. (2019). Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Advanced Materials, 31(29), 1900720.

    Article  Google Scholar 

  120. Ni, F., Xiao, P., Zhang, C., Liang, Y., Gu, J., Zhang, L., et al. (2019). Micro-/macroscopically synergetic control of switchable 2D/3D photothermal water purification enabled by robust, portable, and cost-effective cellulose papers. ACS Applied Materials & Interfaces, 11(17), 15498–15506.

    Article  Google Scholar 

  121. Wang, Y., Wang, C., Song, X., Huang, M., Megarajan, S. K., Shaukat, S. F., et al. (2018). Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. Journal of Materials Chemistry A, 6(21), 9874–9881.

    Article  Google Scholar 

  122. Shi, Y., Li, R., Jin, Y., Zhuo, S., Shi, L., Chang, J., et al. (2018). A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule, 2(6), 1171–1186.

    Article  Google Scholar 

  123. Wang, Y., Wu, X., Gao, T., Lu, Y., Yang, X., Chen, G. Y., et al. (2021). Same materials, bigger output: A reversibly transformable 2D–3D photothermal evaporator for highly efficient solar steam generation. Nano Energy, 79, 105477.

    Article  Google Scholar 

  124. Ma, Q. L., Yin, P. F., Zhao, M. T., Luo, Z. Y., Huang, Y., He, Q. Y., et al. (2019). MOF-based hierarchical structures for solar-thermal clean water production. Advanced Materials, 31(17), 1808249.

    Article  Google Scholar 

  125. Xu, N., Hu, X., Xu, W., Li, X., Zhou, L., Zhu, S., et al. (2017). Mushrooms as efficient solar steam-generation devices. Advanced Materials, 29(28), 1606762.

    Article  Google Scholar 

  126. Bian, Y., Du, Q., Tang, K., Shen, Y., Hao, L., Zhou, D., et al. (2019). Carbonized bamboos as excellent 3D solar vapor-generation devices. Advanced Materials Technologies, 4(4), 1800593.

    Article  Google Scholar 

  127. Tian, Y., Yang, H., Wu, S., Yan, J., Cen, K., Luo, T., et al. (2019). Beyond lotus: Plasma nanostructuring enables efficient energy and water conversion and use. Nano Energy, 66, 104125.

    Article  Google Scholar 

  128. Shao, Y., Tang, J., Li, N., Sun, T., Yang, L., Chen, D., et al. (2020). Designing a bioinspired synthetic tree by unidirectional freezing for simultaneous solar steam generation and salt collection. EcoMat, 2(1), e12018.

    Article  Google Scholar 

  129. Xiao, P., He, J., Liang, Y., Zhang, C., Gu, J., Zhang, J., et al. (2019). Rationally programmable paper-based artificial trees toward multipath solar-driven water extraction from liquid/solid substrates. Solar RRL, 3(7), 1900004.

    Article  Google Scholar 

  130. Zhang, Q., Hu, R., Chen, Y., Xiao, X., Zhao, G., Yang, H., et al. (2020). Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion. Applied Energy, 276, 115545.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (Grant nos. NRF-2020R1C1C1005880 and NRF-2018R1A3B1052541) via SNU-IAMD and SNU Creative-Pioneering Researchers Program via Institute of Engineering Research at SNU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ho-Young Kim or Yun Seog Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Invited Review: This paper is an invited paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Hwang, J., Kim, S. et al. Interfacial Solar Evaporator - Physical Principles and Fabrication Methods. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1347–1367 (2021). https://doi.org/10.1007/s40684-021-00337-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00337-4

Keywords

Navigation