Skip to main content
Log in

Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Diffusion of oxide ions along heterostructured yttria-stabilized zirconia (YSZ) epitaxially grown on single crystalline MgO (001) is investigated. Pulsed laser deposition is used for the epitaxial growth and focused ion beam was applied to open the lateral surface of the YSZ-MgO interface layers and to enable incorporation and diffusion of oxygen. The sample is annealed in 18O2 environment to trace oxide ion transport with Al2O3 layers atop to block diffusion perpendicular to surface of the YSZ plane. Time-of-flight secondary mass ion spectrometry (TOF–SIMS) analyze the planar diffusion profiles. Diffusivity and surface exchange rate are estimated by SIMS data fitting. As a result, it is identified that both oxide ion diffusion and surface incorporation rates are significantly enhanced on surface of the heterostructured YSZ on MgO (001) compared to bulk YSZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

YSZ:

Yttria-stabilized zirconia

STO:

Strontium titanate

PLD:

Pulsed laser deposition

FIB:

Focused ion beam

SEM:

Scanning electron microscopy

TOF–SIMS:

Time-of-flight secondary ion mass spectrometry

XRD:

X-ray diffraction

k :

Surface exchange coefficient (cm/s)

D :

Oxide ion self-diffusion coefficient (cm2/s)

c gas :

Relative concentration of 18O in the environment gas during the ion diffusion

c surface :

Relative concentration of 18O at the surface

c :

Realtive concentration of 18O in YSZ

h :

k/D

c hg :

Relative natural background concentration of 18O

ALD:

Atomic layer deposition

References

  1. Sata, N., Eberman, K., Eberl, K., & Maier, J. (2000). Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature,408, 946–949.

    Article  Google Scholar 

  2. Knöner, G., Reimann, K., Röwer, R., Södervall, U., & Schaefer, H.-E. (2003). Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2·Y2O3. Proceedings of the National Academy of Sciences,100, 3870–3873.

    Article  Google Scholar 

  3. Kosacki, I., Rouleau, C., Becher, P. F., Bentley, J., & Lowndes, D. H. (2004). Surface/interface-related conductivity in nanometer thick YSZ films. Electrochemical and Solid-State Letters,7(12), A459–A461.

    Article  Google Scholar 

  4. Kosacki, I., Rouleau, C., Becher, P. F., Bentley, J., & Lowndes, D. H. (2005). Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics,176(13–14), 1319–1326.

    Article  Google Scholar 

  5. Huang, H., Gür, T. M., Saito, Y., & Prinz, F. B. (2006). High ionic conductivity in ultrathin nanocrystalline gadolinia-doped ceria films. Applied Physics Letter,88(14), 143107.

    Article  Google Scholar 

  6. Shim, J. H., Chao, C.-C., Huang, H., & Prinz, F. B. (2007). Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Materials,19(15), 3850–3854.

    Article  Google Scholar 

  7. Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., et al. (2008). Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science,321(5889), 676–680.

    Article  Google Scholar 

  8. Huang, H., Shim, J. H., Chao, C.-C., Pornprasertsuk, R., Sugawara, M., Gür, T. M., et al. (2009). Characteristics of oxygen reduction on nanocrystalline YSZ. Journal of The Electrochemistry Society,156(3), B392–B396.

    Article  Google Scholar 

  9. Tan, H. Y. K., Baek, J. D., Sun, C.-N., Wei, J., Lee, S. H., & Su, P.-C. (2019). Effect of laser-derived surface re-melting of YSZ electrolyte on performance of solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology,6(2), 235–239.

    Article  Google Scholar 

  10. Karimaghaloo, A., Koo, J., Kang, H.-S., Song, S. A., Shim, J. H., & Lee, M. H. (2019). Nanoscale surface and interface engineering of solid oxide fuel cells by atomic layer deposition. International Journal of Precision Engineering and Manufacturing-Green Technology,6(3), 611–628.

    Article  Google Scholar 

  11. Guo, X., & Maier, J. (2009). Comprehensive modeling of ion conduction of nanosized CaF2/BaF2 multilayer heterostructures. Advanced Functional Materials,19(1), 96–101.

    Article  Google Scholar 

  12. Peters, A., Korte, C., Hesse, D., Zakharov, N., & Janek, J. (2007). Ionic conductivity and activation energy for oxygen ion transport in superlattices—the multilayer system CSZ (ZrO2 + CaO)/Al2O3. Solid State Ionics,178(1–2), 67–76.

    Article  Google Scholar 

  13. Korte, C., Peters, A., Janek, J., Hesse, D., & Zakharov, N. (2008). Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Physical Chemistry Chemical Physics,10, 4623–4635.

    Article  Google Scholar 

  14. Schichtel, N., Korte, C., Hesse, D., & Janek, J. (2009). Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Physical Chemistry Chemical Physics,11, 3043–3048.

    Article  Google Scholar 

  15. Korte, C., Schichtel, N., Hesse, D., & Janek, J. (2009). Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatshefte für Chemie-Chemical Monthly,140(9), 1069–1080.

    Article  Google Scholar 

  16. Fabbri, E., Pergolesi, D., & Traversa, E. (2010). Ionic conductivity in oxide heterostructures: the role of interfaces. Science and Technology of Advanced Materials,11(5), 054503.

    Article  Google Scholar 

  17. Guo, X. (2009). Comment on “colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures”. Science,324(5926), 465.

    Article  Google Scholar 

  18. Cavallaro, A., Burriel, M., Roqueta, J., Apostolidis, A., Bernardi, A., Tarancón, A., et al. (2010). Electrical nature of the enhanced conductivity in YSZ-STO multilayers deposited by PLD. Solid State Ionics,181(13–14), 592–601.

    Article  Google Scholar 

  19. Gerstl, M., Frömling, T., Schintlmeister, A., Hutter, H., & Fleig, J. (2011). Measurement of 18O tracer diffusion coefficients in thin yttria stabilized zirconia films. Solid State Ionics,184(1), 23–26.

    Article  Google Scholar 

  20. Harrington, G. F., Cavallaro, A., McComb, D. W., Skinner, S. J., & Kilner, J. A. (2017). The effects of lattice strain, dislocations, and microstructure on the transport properties of YSZ films. Physical Chemistry Chemical Physics,19, 14319–14336.

    Article  Google Scholar 

  21. Oishi, Y., & Kingery, W. D. (1960). Self-diffusion of oxygen in single crystal and polycrystalline aluminum oxide. The Journal of Chemical Physics,33(2), 480–486.

    Article  Google Scholar 

  22. Bae, K., Kim, J. W., Son, J.-W., Lee, T., Kang, S., Prinz, B. F., et al. (2018). 3D evaluation of porous zeolite absorbents using FIB-SEM tomography. International Journal of Precision Engineering and Manufacturing-Green Technology,5(2), 195–199.

    Article  Google Scholar 

  23. Burriel, M., Garcia, G., Santiso, J., Kilner, J. A., Chater, R. J., & Skinner, S. J. (2008). Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. Journal of Materials Chemistry,18, 416–422.

    Article  Google Scholar 

  24. Wang, L., Merkle, R., Maier, J., Acarturk, T., & Starke, U. (2009). Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films. Applied Physics Letters,94(7), 071908.

    Article  Google Scholar 

  25. Gerstl, M., Friedbacher, G., Kubel, F., Hutter, H., & Fleig, J. (2013). The relevance of interfaces for oxide ion transport in yttria stabilized zirconia (YSZ) thin films. Physical Chemistry Chemical Physics,15, 1097–1107.

    Article  Google Scholar 

  26. Sakai, T., Hyodo, J., Ogushi, M., Inoishi, A., Ida, S., & Ishihara, T. (2017). Evaluation of isotope diffusion coefficient and surface exchange coefficient of ScSZ series oxide by oxygen isotope exchange method. Solid State Ionics,301, 156–162.

    Article  Google Scholar 

  27. Crank, J. (1957). The mathematics of diffusion. London: Oxford Univ. Press.

    MATH  Google Scholar 

  28. Manning, P. S., Sirman, J. D., Souza, R. A., & Kilner, J. A. (1997). The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia. Solid State Ionics100(1–2), 1–10.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Hydrogen Energy Innovation Technology Development Program of the National Research Foundation (NRF) of Korea funded by the Korean Ministry of Science and ICT (MSIT) (No. NRF-2019M3E6A1064697). This work was also supported by the Korea Electric Power Corporation (Grant Number: R17XA05-57), the Agency for Defense Development (UD170107GD), Republic of Korea and Korea University Internal Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Hyung Shim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, K., Jang, D.Y., Park, J.S. et al. Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 405–410 (2020). https://doi.org/10.1007/s40684-019-00169-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00169-3

Keywords

Navigation