Skip to main content
Log in

Optimization of Electrospinning Parameters for Electrospun Nanofiber-Based Triboelectric Nanogenerators

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this study, the effects of various fabrication parameters on the electrical performance of an electrospun nanofiber-based triboelectric nanogenerator (EN-TENG) are systematically investigated through the design of experiments. We selected four fabrication parameters to examine, namely: (i) working distance (needle to collector distance), (ii) needle gauge, (iii) electrospinning time, and (iv) counter materials. A mixed orthogonal array of L18 experiments was designed with respect to the one factor having two level values and three factors having three level values. The open circuit voltage of the EN-TENG was varied from 86.1 to 576.7 V with the aforementioned fabrication parameters. A longer working distance, a larger needle gauge, and a longer electrospinning time increased the open circuit voltage. The power density of the optimized EN-TENG was approximately 2.39 W/m2 at a 100 MΩ load resistance and was sufficient to illuminate a total of 200 LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ρ A :

Charge density on the surface of the contact materials

Q :

Transferred charges

ε 0 :

Relative permittivity of the air

ε r :

Relative permittivity of contact material

d :

Thickness of the contact material

x(t):

Distance variation between the contact materials

References

  1. Izhar, Khan F. U. (2018). Three degree of freedom acoustic energy harvester using improved helmholtz resonator. Int J Precis Eng Manuf, 19(1), 143–154.

    Article  MathSciNet  Google Scholar 

  2. Park, H. (2017). Vibratory electromagnetic induction energy harvester on wheel surface of mobile sources. Int J Precis Eng Manuf Green Tech, 4(1), 59–66.

    Article  Google Scholar 

  3. Jang, S., & Oh, J. H. (2018). Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci Rep, 8, 14287.

    Article  Google Scholar 

  4. Cao, L., Li, Z., Guo, C., Li, P., Meng, X., & Wang, T. (2019). Design and test of the MEMS coupled piezoelectric-electromagnetic energy harvester. Int J Precis Eng Manuf, 20(4), 673–686.

    Article  Google Scholar 

  5. Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.

    Article  Google Scholar 

  6. Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.-H., et al. (2013). Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano, 7(10), 9461–9468.

    Article  Google Scholar 

  7. Lee, J.-H., Ryu, H., Kim, T.-Y., Kwak, S.-S., Yoon, H.-J., Kim, T.-H., et al. (2015). Thermally induced strain-coupled highly stretchable and sensitive pyroelectric nanogenerators. Adv Energy Mater, 5, 1500704.

    Article  Google Scholar 

  8. Jang, S., Kim, H., & Oh, J. H. (2017). Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. Nanoscale, 9, 13034–13041.

    Article  Google Scholar 

  9. Zhu, G., Lin, Z.-H., Jing, Q., Bai, P., Pan, C., Yang, Y., et al. (2013). Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett, 13, 847–853.

    Article  Google Scholar 

  10. Fan, F.-R., Lin, L., Zhu, G., Wu, W. Z., Zhang, R., & Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett, 12, 3109–3114.

    Article  Google Scholar 

  11. Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y. S., Hu, Y., et al. (2013). Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci, 6, 3576–3583.

    Article  Google Scholar 

  12. Wang, X., Yang, B., Liu, J., Zhu, Y., Yang, C., & He, Q. (2016). A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci Rep, 6, 36409.

    Article  Google Scholar 

  13. Jang, S., Kim, Y., & Oh, J. H. (2016). Influence of processing conditions and material properties on electrohydrodynamic direct patterning of a polymer solution. J Electron Mater, 45(4), 2291–2298.

    Article  Google Scholar 

  14. Cho, Y. S., Lee, J. S., Hong, M. W., Lee, S.-H., Kim, Y. Y., & Cho, Y.-S. (2018). Comparative assessment of the ability of dual-pore structure and hydroxyapatite to enhance the proliferation of osteoblast-like cells in well-interconnected scaffolds. Int J Precis Eng Manuf, 19(4), 605–612.

    Article  Google Scholar 

  15. Chen, F., Wu, Y., Ding, Z., Xia, X., Li, S., Zheng, H., et al. (2019). A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy, 56, 241–251.

    Article  Google Scholar 

  16. Garain, S., Jana, S., Sinha, T. K., & Mandal, D. (2016). Design of in situ Poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces, 8, 4532–4540.

    Article  Google Scholar 

  17. Mi, H.-Y., Jing, X., Zheng, Q., Fang, L., Huang, H.-X., Turng, L.-S., et al. (2018). High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy, 48, 327–336.

    Article  Google Scholar 

  18. Li, Z., Shen, J., Abdalla, I., Yu, J., & Ding, B. (2017). Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 36, 341–348.

    Article  Google Scholar 

  19. Zheng, Y., Cheng, L., Yuan, M., Wang, Z., Zhang, L., Qin, Y., et al. (2014). An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale, 6, 7842–7846.

    Article  Google Scholar 

  20. Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., & Zhu, M. (2015). Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 14, 226–235.

    Article  Google Scholar 

  21. Ye, B. U., Kim, B.-J., Ryu, J., Lee, J. Y., Baik, J. M., & Hong, K. (2015). Electrospun Ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power. Nanoscale, 7, 16189–16194.

    Article  Google Scholar 

  22. Jang, S., Kim, H., Kim, Y., Kang, B. J., & Oh, J. H. (2016). Honeycomb-like nanofiber based triboelectric nanogenerator using self-assembled electrospun poly(vinylidene fluoride-co-trifluoroethylene) nanofibers. Appl Phys Lett, 108, 143901.

    Article  Google Scholar 

  23. Lee, D., Chung, J., Yong, H., Lee, S., & Shin, D. (2019). A deformable foam-layered triboelectric tactile sensor with adjustable dynamic range. Int J Precis Eng Manuf Green Tech, 6(1), 43–51.

    Article  Google Scholar 

  24. Wang, H., Shi, M., Zhu, K., Su, Z., Cheng, X., Song, Y., et al. (2016). High performance triboelectric nanogenerators with aligned carbon nanotubes. Nanoscale, 8, 18489–18494.

    Article  Google Scholar 

  25. Chen, J., Guo, H., He, X., Liu, G., Xi, Y., Shi, H., et al. (2016). Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl Mater Interfaces, 8, 736–744.

    Article  Google Scholar 

  26. He, X., Guo, H., Yue, X., Gao, J., Xi, Y., & Hu, C. (2015). Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 7, 1896–1903.

    Article  Google Scholar 

  27. Seung, W., Yoon, H.-J., Kim, T. Y., Ryu, H., Kim, J., Lee, J.-H., et al. (2017). Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv Energy Mater, 7, 1600988.

    Article  Google Scholar 

  28. Kwon, Y. H., Shin, S.-H., Kim, Y.-H., Jung, J.-Y., Lee, M. H., & Nah, J. (2016). Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators. Nano Energy, 25, 225–231.

    Article  Google Scholar 

  29. Song, J., Xie, H., Wu, W., Joseph, V. R., Wu, C. F. J., & Wang, Z. L. (2010). Robust optimization of the output voltage of nanogenerators by statistical design of experiments. Nano Res, 3(9), 613–619.

    Article  Google Scholar 

  30. Karthikeyan, P., & Mahadevan, K. (2015). Investigation on the effects of sic particle addition in the weld zone during friction stir welding of Al 6351 alloy. Int J Adv Manuf Technol, 80, 1919–1926.

    Article  Google Scholar 

  31. Tosun, N., Cogun, C., & Tosun, G. (2004). A study on kerf and material removal rate in wire electrical discharge machining based on taguchi method. J Mater Process Technol, 152, 316–322.

    Article  Google Scholar 

  32. Wang, J., Wu, C., Dai, Y., Zhao, Z., Wang, A., Zhang, T., et al. (2017). Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun, 8(1), 88.

    Article  Google Scholar 

  33. Zheng, Q., Fang, L., Guo, H., Yang, K., Cai, Z., Meador, M. A. B., et al. (2018). Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv Funct Mater, 28, 1706365.

    Article  Google Scholar 

  34. Baker, S. C., Atkin, N., Gunning, P. A., Granville, N., Wilson, K., Wilson, D., et al. (2006). Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials, 27(16), 3136–3146.

    Article  Google Scholar 

  35. Yuan, X., Zhang, Y., Dong, C., & Sheng, J. (2004). Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int, 53(11), 1704–1710.

    Article  Google Scholar 

  36. Zhou, F.-L., Gong, R.-H., & Porat, I. (2010). Needle and needleless electrospinning for nanofibers. J Appl Polym Sci, 115, 2591–2598.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2019R1A2C1005023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je Hoon Oh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, S., Kim, Y., Lee, S. et al. Optimization of Electrospinning Parameters for Electrospun Nanofiber-Based Triboelectric Nanogenerators. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 731–739 (2019). https://doi.org/10.1007/s40684-019-00134-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00134-0

Keywords

Navigation