Skip to main content

Advertisement

Log in

Novel Objective Measures of Hypersomnolence

  • HYPERSOMNIA DISORDERS (D PLANTE, SECTION EDITOR)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract 

Purpose of Review

The purpose is to provide a brief overview of current objective measures of hypersomnolence, discuss proposed measure modifications, and review emerging measures.

Recent Findings

There is potential to optimize current tools using novel metrics. High-density and quantitative EEG-based measures may provide discriminative informative. Cognitive testing may quantify cognitive dysfunction common to hypersomnia disorders, particularly in attention, and objectively measure pathologic sleep inertia. Structural and functional neuroimaging studies in narcolepsy type 1 have shown considerable variability but so far implicate both hypothalamic and extra-hypothalamic regions; fewer studies of other CDH have been performed. There is recent renewed interest in pupillometry as a measure of alertness in the evaluation of hypersomnolence.

Summary

No single test captures the full spectrum of disorders, and use of multiple measures will likely improve diagnostic precision. Research is needed to identify novel measures and disease-specific biomarkers and to define combinations of measures optimal for CDH diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

N/A.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Littner MR, Kushida C, Wise M, Davila DG, Morgenthaler T, Lee-Chiong T, et al. Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. Sleep. 2005;28(1):113–21.

    Article  PubMed  Google Scholar 

  2. International classification of sleep disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine. 2014.

  3. Trotti LM. Twice is nice? Test-retest reliability of the Multiple Sleep Latency Test in the central disorders of hypersomnolence. J Clin Sleep Med. 2020;16(S1):17–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. •• Krahn LE, Arand DL, Avidan AY, Davila DG, DeBassio WA, Ruoff CM, et al. Recommended protocols for the Multiple Sleep Latency Test and Maintenance of Wakefulness Test in adults: guidance from the American Academy of Sleep Medicine. J Clin Sleep Med. 2021;17(12):2489–98. Protocol paper describing gold standard performance of MSLT & MWT.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ruoff C, Pizza F, Trotti LM, Sonka K, Vandi S, Cheung J, et al. The MSLT is repeatable in narcolepsy type 1 but not narcolepsy type 2: a retrospective patient study. J Clin Sleep Med. 2018;14(1):65–74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lopez R, Doukkali A, Barateau L, Evangelista E, Chenini S, Jaussent I, et al. Test-retest reliability of the Multiple Sleep Latency Test in central disorders of hypersomnolence. Sleep. 2017;40(12):zsx164.

  7. Goldbart A, Peppard P, Finn L, Ruoff CM, Barnet J, Young T, et al. Narcolepsy and predictors of positive MSLTs in the Wisconsin Sleep Cohort. Sleep. 2014;37(6):1043–51.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Plante DT. Sleep propensity in psychiatric hypersomnolence: a systematic review and meta-analysis of multiple sleep latency test findings. Sleep Med Rev. 2017;31:48–57.

    Article  PubMed  Google Scholar 

  9. Plante DT, Cook JD, Goldstein MR. Objective measures of sleep duration and continuity in major depressive disorder with comorbid hypersomnolence: a primary investigation with contiguous systematic review and meta-analysis. J Sleep Res. 2017;26(3):255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vernet C, Arnulf I. Idiopathic hypersomnia with and without long sleep time: a controlled series of 75 patients. Sleep. 2009;32(6):753–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Plante DT, Finn LA, Hagen EW, Mignot E, Peppard PE. Subjective and objective measures of hypersomnolence demonstrate divergent associations with depression among participants in the Wisconsin Sleep Cohort Study. J Clin Sleep Med. 2016;12(4):571–8.

  12. Trotti LM, Staab BA, Rye DB. Test-retest reliability of the multiple sleep latency test in narcolepsy without cataplexy and idiopathic hypersomnia. J Clin Sleep Med. 2013;9(8):789–95.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Folkerts M, Rosenthal L, Roehrs T, Krstevska S, Murlidhar A, Zorick F, et al. The reliability of the diagnostic features in patients with narcolepsy. Biol Psychiatry. 1996;40(3):208–14.

    Article  CAS  PubMed  Google Scholar 

  14. Kwon Y, Kazaglis L, Cho Y, Howell MJ, Mahowald MW. Test-retest reliability of two consecutive mean sleep latency tests in patients with hypersomnia. Sleep Biol Rhythms. 2017;15(4):337–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carskadon MA, Dement WC. Daytime sleepiness: quantification of a behavioral state. Neurosci Biobehav Rev. 1987;11(3):307–17.

    Article  CAS  PubMed  Google Scholar 

  16. Carskadon MA, Wolfson AR, Acebo C, Tzischinsky O, Seifer R. Adolescent sleep patterns, circadian timing, and sleepiness at a transition to early school days. Sleep. 1998;21(8):871–81.

    Article  CAS  PubMed  Google Scholar 

  17. Kosky CA, Bonakis A, Yogendran A, Hettiarachchi G, Dargan PI, Williams AJ. Urine toxicology in adults evaluated for a central hypersomnia and how the results modify the physician’s diagnosis. J Clin Sleep Med. 2016;12(11):1499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dzodzomenyo S, Stolfi A, Splaingard D, Earley E, Onadeko O, Splaingard M. Urine toxicology screen in multiple sleep latency test: the correlation of positive tetrahydrocannabinol, drug negative patients, and narcolepsy. J Clin Sleep Med. 2015;11(2):93–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pizza F, Moghadam KK, Vandi S, Detto S, Poli F, Mignot E, et al. Daytime continuous polysomnography predicts MSLT results in hypersomnias of central origin. J Sleep Res. 2013;22(1):32–40.

    Article  PubMed  Google Scholar 

  20. Evangelista E, Lopez R, Barateau L, Chenini S, Bosco A, Jaussent I, et al. Alternative diagnostic criteria for idiopathic hypersomnia: a 32-hour protocol. Ann Neurol. 2018;83(2):235–47.

    Article  CAS  PubMed  Google Scholar 

  21. Fronczek R, Arnulf I, Baumann CR, Maski K, Pizza F, Trotti LM. To split or to lump? Classifying the central disorders of hypersomnolence. Sleep. 2020;43(8):zsaa044.

  22. • Cook JD, Eftekari SC, Leavitt LA, Prairie ML, Plante DT. Optimizing actigraphic estimation of sleep duration in suspected idiopathic hypersomnia. J Clin Sleep Med. 2019;15(4):597–602. First validation of actigraphy settings for evaluation of patients getting evaluated for idiopathic hypersomnia

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arand D, Bonnet M, Hurwitz T, Mitler M, Rosa R, Sangal RB. The clinical use of the MSLT and MWT. Sleep. 2005;28(1):123–44.

    Article  PubMed  Google Scholar 

  24. Pizza F, Vandi S, Detto S, Poli F, Franceschini C, Montagna P, et al. Different sleep onset criteria at the multiple sleep latency test (MSLT): an additional marker to differentiate central nervous system (CNS) hypersomnias. J Sleep Res. 2011;20(1 Pt 2):250–6.

    Article  PubMed  Google Scholar 

  25. Plante DT. Nocturnal sleep architecture in idiopathic hypersomnia: a systematic review and meta-analysis. Sleep Med. 2018;45:17–24.

    Article  PubMed  Google Scholar 

  26. • Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Sanford LD, et al. Polysomnographic nighttime features of narcolepsy: a systematic review and meta-analysis. Sleep Med Rev. 2021;58:101488. Distinctions in PSG in NT1 and NT2.

    Article  PubMed  Google Scholar 

  27. •• Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Vitiello MV, et al. Comparative polysomnography parameters between narcolepsy type 1/type 2 and idiopathic hypersomnia: a systematic review and meta-analysis. Sleep Med Rev. 2022;63:101610. Distinctions in NT1 & IH, similarities in NT2 and IH.

    Article  PubMed  Google Scholar 

  28. • Maski KP, Colclasure A, Little E, Steinhart E, Scammell TE, Navidi W, et al. Stability of nocturnal wake and sleep stages defines central nervous system disorders of hypersomnolence. Sleep. 2021;44(7):zsab021. PSG dynamics and CDH diagnosis.

  29. Drakatos P, Kosky CA, Higgins SE, Muza RT, Williams AJ, Leschziner GD. First rapid eye movement sleep periods and sleep-onset rapid eye movement periods in sleep-stage sequencing of hypersomnias. Sleep Med. 2013;14(9):897–901.

    Article  PubMed  Google Scholar 

  30. Liu Y, Zhang J, Lam V, Ho CK, Zhou J, Li SX, et al. Altered sleep stage transitions of REM sleep: a novel and stable biomarker of narcolepsy. J Clin Sleep Med. 2015;11(8):885–94.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wimmer RD, Astori S, Bond CT, Rovo Z, Chatton JY, Adelman JP, et al. Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J Neurosci. 2012;32(40):13917–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bove A, Culebras A, Moore JT, Westlake RE. Relationship between sleep spindles and hypersomnia. Sleep. 1994;17(5):449–55.

    Article  CAS  PubMed  Google Scholar 

  33. Delrosso LM, Chesson AL, Hoque R. Manual characterization of sleep spindle index in patients with narcolepsy and idiopathic hypersomnia. Sleep Disord. 2014;2014:271802.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Christensen JAE, Nikolic M, Hvidtfelt M, Kornum BR, Jennum P. Sleep spindle density in narcolepsy. Sleep Med. 2017;34:40–9.

    Article  PubMed  Google Scholar 

  35. Filardi M, Pizza F, Martoni M, Vandi S, Plazzi G, Natale V. Actigraphic assessment of sleep/wake behavior in central disorders of hypersomnolence. Sleep Med. 2015;16(1):126–30.

    Article  PubMed  Google Scholar 

  36. Kang JM, Cho SE, Na KS, Kang SG. Spectral power analysis of sleep electroencephalography in subjects with different severities of obstructive sleep apnea and healthy controls. Nat Sci Sleep. 2021;13:477–86.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hung CS, Sarasso S, Ferrarelli F, Riedner B, Ghilardi MF, Cirelli C, et al. Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep. 2013;36(1):59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol. 1981;51(5):483–95.

    Article  CAS  PubMed  Google Scholar 

  39. Dijk DJ, Brunner DP, Borbely AA. Time course of EEG power density during long sleep in humans. Am J Physiol. 1990;258(3 Pt 2):R650–61.

    CAS  PubMed  Google Scholar 

  40. Cajochen C, Foy R, Dijk DJ. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep research online : SRO. 1999;2(3):65–9.

    CAS  PubMed  Google Scholar 

  41. Cajochen C, Brunner DP, Krauchi K, Graw P, Wirz-Justice A. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep. 1995;18(10):890–4.

    Article  CAS  PubMed  Google Scholar 

  42. Finelli LA, Baumann H, Borbely AA, Achermann P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience. 2000;101(3):523–9.

    Article  CAS  PubMed  Google Scholar 

  43. Vyazovskiy VV, Tobler I. Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res. 2005;1050(1–2):64–71.

    Article  CAS  PubMed  Google Scholar 

  44. Strijkstra AM, Beersma DG, Drayer B, Halbesma N, Daan S. Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram. Neurosci Lett. 2003;340(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  45. Khatami R, Landolt HP, Achermann P, Retey JV, Werth E, Mathis J, et al. Insufficient non-REM sleep intensity in narcolepsy-cataplexy. Sleep. 2007;30(8):980–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khatami R, Landolt HP, Achermann P, Adam M, Retey JV, Werth E, et al. Challenging sleep homeostasis in narcolepsy-cataplexy: implications for non-REM and REM sleep regulation. Sleep. 2008;31(6):859–67.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yun SH, Choi HD, Seo WS. Spectral analysis of polysomnography in narcolepsy. Psychiatry Investig. 2017;14(2):193–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cairns A, Bogan R. Comparison of the macro and microstructure of sleep in a sample of sleep clinic hypersomnia cases. Neurobiol Sleep Circadian Rhythms. 2019;6:62–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Berry RB, Quan SF, Abreu AR, Bibbs ML, DelRosso LM, Harding SM, et al. The AASM manual for the scoring of sleep and associated Events. Darien, IL: American Academy of Sleep Medicine; 2020.

    Google Scholar 

  50. Seeck M, Koessler L, Bast T, Leijten F, Michel C, Baumgartner C, et al. The standardized EEG electrode array of the IFCN. Clin Neurophysiol. 2017;128(10):2070–7.

    Article  PubMed  Google Scholar 

  51. Plante DT, Cook JD, Barbosa LS, Goldstein MR, Prairie ML, Smith RF, et al. Establishing the objective sleep phenotype in hypersomnolence disorder with and without comorbid major depression. Sleep. 2019;42(6):zsz060.

  52. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

  53. Plante DT, Landsness EC, Peterson MJ, Goldstein MR, Wanger T, Guokas JJ, et al. Altered slow wave activity in major depressive disorder with hypersomnia: a high density EEG pilot study. Psychiatry Res. 2012;201(3):240–4.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lim J, Dinges DF. Sleep deprivation and vigilant attention. Ann N Y Acad Sci. 2008;1129:305–22.

    Article  PubMed  Google Scholar 

  55. Thomann J, Baumann CR, Landolt HP, Werth E. Psychomotor vigilance task demonstrates impaired vigilance in disorders with excessive daytime sleepiness. J Clin Sleep Med. 2014;10(9):1019–24.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dimitrova A, Fronczek R, Van der Ploeg J, Scammell T, Gautam S, Pascual-Leone A, et al. Reward-seeking behavior in human narcolepsy. J Clin Sleep Med. 2011;7(3):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  57. • Trotti LM, Saini P, Bremer E, Mariano C, Moron D, Rye DB, et al. The Psychomotor Vigilance Test as a measure of alertness and sleep inertia in people with central disorders of hypersomnolence. J Clin Sleep Med. 2022;18(5):1395–403. Operationalizing sleep inertia in CDH patients during MSLT naps.

    Article  PubMed  Google Scholar 

  58. • Evangelista E, Rassu AL, Lopez R, Biagioli N, Chenini S, Barateau L, et al. Sleep inertia measurement with the psychomotor vigilance task in idiopathic hypersomnia. Sleep. 2022;45(1):zsab220. Operationalizing sleep inertia in CDH patients after overnight sleep.

  59. Van Schie MK, Thijs RD, Fronczek R, Middelkoop HA, Lammers GJ, Van Dijk JG. Sustained attention to response task (SART) shows impaired vigilance in a spectrum of disorders of excessive daytime sleepiness. J Sleep Res. 2012;21(4):390–5.

    Article  PubMed  Google Scholar 

  60. Lammers GJ, Bassetti CLA, Dolenc-Groselj L, Jennum PJ, Kallweit U, Khatami R, et al. Diagnosis of central disorders of hypersomnolence: a reappraisal by European experts. Sleep Med Rev. 2020;52:101306.

    Article  PubMed  Google Scholar 

  61. Ramm M, Boentert M, Lojewsky N, Jafarpour A, Young P, Heidbreder A. Disease-specific attention impairment in disorders of chronic excessive daytime sleepiness. Sleep Med. 2018;53:133–40.

    Article  PubMed  Google Scholar 

  62. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Menzler K, Belke M, Unger MM, Ohletz T, Keil B, Heverhagen JT, et al. DTI reveals hypothalamic and brainstem white matter lesions in patients with idiopathic narcolepsy. Sleep Med. 2012;13(6):736–42.

    Article  CAS  PubMed  Google Scholar 

  64. Weng HH, Chen CF, Tsai YH, Wu CY, Lee M, Lin YC, et al. Gray matter atrophy in narcolepsy: an activation likelihood estimation meta-analysis. Neurosci Biobehav Rev. 2015;59:53–63.

    Article  PubMed  Google Scholar 

  65. Scherfler C, Frauscher B, Schocke M, Nocker M, Gschliesser V, Ehrmann L, et al. White and gray matter abnormalities in narcolepsy with cataplexy. Sleep. 2012;35(3):345–51.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tanasescu R, Tench CR, Cottam WJ, Constantinescu CS, Auer DP. Coordinate based meta-analysis does not show grey matter atrophy in narcolepsy. Neurosci Biobehav Rev. 2015;57:297–8.

    Article  PubMed  Google Scholar 

  67. Juvodden HT, Alnaes D, Lund MJ, Agartz I, Andreassen OA, Dietrichs E, et al. Widespread white matter changes in post-H1N1 patients with narcolepsy type 1 and first-degree relatives. Sleep. 2018;41(10):zsy145.

  68. Park YK, Kwon OH, Joo EY, Kim JH, Lee JM, Kim ST, et al. White matter alterations in narcolepsy patients with cataplexy: tract-based spatial statistics. J Sleep Res. 2016;25(2):181–9.

    Article  PubMed  Google Scholar 

  69. Park HR, Kim HR, Seong JK, Joo EY. Localizing deficits in white matter tracts of patients with narcolepsy with cataplexy: tract-specific statistical analysis. Brain Imaging Behav. 2020;14(5):1674–81.

    Article  PubMed  Google Scholar 

  70. Joo EY, Hong SB, Tae WS, Kim JH, Han SJ, Cho YW, et al. Cerebral perfusion abnormality in narcolepsy with cataplexy. Neuroimage. 2005;28(2):410–6.

    Article  PubMed  Google Scholar 

  71. Lodi R, Tonon C, Vignatelli L, Iotti S, Montagna P, Barbiroli B, et al. In vivo evidence of neuronal loss in the hypothalamus of narcoleptic patients. Neurology. 2004;63(8):1513–5.

    Article  CAS  PubMed  Google Scholar 

  72. Joo EY, Tae WS, Kim JH, Kim BT, Hong SB. Glucose hypometabolism of hypothalamus and thalamus in narcolepsy. Ann Neurol. 2004;56(3):437–40.

    Article  CAS  PubMed  Google Scholar 

  73. Dauvilliers Y, Comte F, Bayard S, Carlander B, Zanca M, Touchon J. A brain PET study in patients with narcolepsy-cataplexy. J Neurol Neurosurg Psychiatry. 2010;81(3):344–8.

    Article  PubMed  Google Scholar 

  74. Kim YK, Yoon IY, Shin YK, Cho SS, Kim SE. Modafinil-induced hippocampal activation in narcolepsy. Neurosci Lett. 2007;422(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  75. Dauvilliers Y, Evangelista E, de Verbizier D, Barateau L, Peigneux P. [18F]Fludeoxyglucose-positron emission tomography evidence for cerebral hypermetabolism in the awake state in narcolepsy and idiopathic hypersomnia. Front Neurol. 2017;8:350.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Trotti LM, Saini P, Crosson B, Meltzer CC, Rye DB, Nye JA. Regional brain metabolism differs between narcolepsy type 1 and idiopathic hypersomnia. Sleep. 2021;44(8):zsab050.

  77. Huang YS, Hsiao IT, Liu FY, Hwang FM, Lin KL, Huang WC, et al. Neurocognition, sleep, and PET findings in type 2 vs type 1 narcolepsy. Neurology. 2018;90(17):e1478–87.

    Article  PubMed  Google Scholar 

  78. Huang YS, Liu FY, Lin CY, Hsiao IT, Guilleminault C. Brain imaging and cognition in young narcoleptic patients. Sleep Med. 2016;24:137–44.

    Article  PubMed  Google Scholar 

  79. •• Rahimi-Jafari S, Sarebannejad S, Saberi A, Khazaie H, Camilleri JA, Eickhoff CR, et al. Is there any consistent structural and functional brain abnormality in narcolepsy? A meta-analytic perspective. Neurosci Biobehav Rev. 2022;132:1181–2. Meta-analysis of neuroimaging in narcolepsy, highlights lack of consistent localization among existing literature.

    Article  PubMed  Google Scholar 

  80. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.

    Article  CAS  PubMed  Google Scholar 

  82. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  83. • Pomares FB, Boucetta S, Lachapelle F, Steffener J, Montplaisir J, Cha J, et al. Beyond sleepy: structural and functional changes of the default-mode network in idiopathic hypersomnia. Sleep. 2019;zsz156. Investigation of DMN in idiopathic hypersomnia.

  84. Boucetta S, Montplaisir J, Zadra A, Lachapelle F, Soucy JP, Gravel P, et al. Altered regional cerebral blood flow in idiopathic hypersomnia. Sleep. 2017;40(10):zsx140.

  85. Dang-Vu TT, Desseilles M, Laureys S, Degueldre C, Perrin F, Phillips C, et al. Cerebral correlates of delta waves during non-REM sleep revisited. Neuroimage. 2005;28(1):14–21.

    Article  PubMed  Google Scholar 

  86. An K, Zhao H, Miao Y, Xu Q, Li YF, Ma YQ, et al. A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat Neurosci. 2020;23(7):869–80.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Z, Beier C, Weil T, Hattar S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun. 2021;12(1):5115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci. 2011;31(45):16094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Newman J, Broughton R. Pupillometric assessment of excessive daytime sleepiness in narcolepsy-cataplexy. Sleep. 1991;14(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  90. Pressman MR, Spielman AJ, Korczyn AD, Rubenstein AE, Pollak CP, Weitzman ED. Patterns of daytime sleepiness in narcoleptics and normals: a pupillometric study. Electroencephalogr Clin Neurophysiol. 1984;57(2):129–33.

    Article  CAS  PubMed  Google Scholar 

  91. Wilhelm H, Ludtke H, Wilhelm B. Pupillographic sleepiness testing in hypersomniacs and normals. Graefes Arch Clin Exp Ophthalmol. 1998;236(10):725–9.

    Article  CAS  PubMed  Google Scholar 

  92. • Plante DT, Cook JD, Prairie ML. Multimodal assessment increases objective identification of hypersomnolence in patients referred for multiple sleep latency testing. J Clin Sleep Med. 2020;16(8):1241–8. Evaluation of multi-component testing for improving diagnosis of IH.

    Article  PubMed  PubMed Central  Google Scholar 

  93. van der Meijden WP, te Lindert BH, Bijlenga D, Coppens JE, Gomez-Herrero G, Bruijel J, et al. Post-illumination pupil response after blue light: reliability of optimized melanopsin-based phototransduction assessment. Exp Eye Res. 2015;139:73–80.

    Article  PubMed  Google Scholar 

  94. • Rach H, Kilic-Huck U, Reynaud E, Hugueny L, Peiffer E, de Belleplaine VR, et al. The melanopsin-mediated pupil response is reduced in idiopathic hypersomnia with long sleep time. Sci Rep. 2022;12(1):9018. Pupilometry (via PIPR) in IH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grant NS 111280 (LMT) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Marie Trotti.

Ethics declarations

Ethical Approval

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Competing Interests

Dr. Trotti is a member of the Board of Directors of the American Academy of Sleep Medicine, the AASM Foundation, and the American Board of Sleep Medicine. Any opinions expressed are those of the authors and do not necessarily reflect those of the NIH or these organizations. The authors have no conflicts of interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Hypersomnia Disorders

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dworetz, A., Trotti, L.M. & Sharma, S. Novel Objective Measures of Hypersomnolence. Curr Sleep Medicine Rep 9, 45–55 (2023). https://doi.org/10.1007/s40675-022-00245-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-022-00245-2

Keywords

Navigation