Skip to main content

Advertisement

Log in

An Update on the Misuse and Abuse Potential of Pharmacological Treatments for Central Disorders of Hypersomnolence

  • Hypersomnia Disorders (DT Plante, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

All medications currently approved for the treatment of central disorders of hypersomnolence, with the exception of pitolisant, are scheduled substances. There is a perceived and real potential for misuse and abuse of traditional stimulants and sodium oxybate, with generally less concern for modafinil. Pitolisant and solriamfetol are newer approved agents with unique pharmacological profiles. In our paper, we aim to review the misuse and abuse potential of new and existing treatments for narcolepsy and idiopathic hypersomnia.

Recent Findings

Available preclinical, clinical, and post-marketing surveillance data on pitolisant, solriamfetol, and modafinil suggest that these agents have a very low potential for misuse and abuse. Agents that have high potential for misuse, specifically stimulants and sodium oxybate, most likely carry lower risks when used to treat narcolepsy or idiopathic hypersomnia compared to risks of misuse in the general population or among other neuropsychiatric conditions.

Summary

Approved therapies for central disorders of hypersomnolence carry low yet varying risks for misuse and abuse. Further studies in patients diagnosed with central disorders of hypersomnolence are required to comprehensively assess the misuse and abuse potential of these therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jennum P, Ibsen R, Knudsen S, Kjellberg J. Comorbidity and mortality of narcolepsy: a controlled retro- and prospective national study. Sleep. 2013;36:835–40.

    Article  Google Scholar 

  2. Rasmussen N. America’s first amphetamine epidemic 1929–1971. Am J Public Health. 2008;98:974–85.

    Article  Google Scholar 

  3. Rabiner DL, Anastopoulos AD, Costello EJ, Hoyle RH, Esteban McCabe S, Swartzwelder HS. The misuse and diversion of prescribed ADHD medications by college students. J Atten Disord. 2009;13:144–53.

    Article  Google Scholar 

  4. Jaffe SL. Intranasal abuse of prescribed methylphenidate by an alcohol and drug abusing adolescent with ADHD. J Am Acad Child Adolesc Psychiatry. 1991;30:773–5.

    CAS  Google Scholar 

  5. Parran TV Jr, Jasinski DR. Intravenous methylphenidate abuse: prototype for prescription drug abuse. Arch Intern Med. 1991;151:781–3.

    Article  Google Scholar 

  6. Kaye S, Darke S. The diversion and misuse of pharmaceutical stimulants: what do we know and why should we care? Addiction. 2012;107:467–77.

    Article  Google Scholar 

  7. Seth P, Scholl L, Rudd RA, Bacon S. Overdose deaths involving opioids, cocaine, and psychostimulants - United States, 2015–2016. MMWR Morb Mortal Wkly Rep. 2018;67:349–58.

    Article  Google Scholar 

  8. Wilens TE, Adler LA, Adams J, Sgambati S, Rotrosen J, Sawtelle R, Utzinger L, Fusillo S. Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. J Am Acad Child Adolesc Psychiatry. 2008;47:21–31.

    Article  Google Scholar 

  9. Mantyh WG, Auger RR, Morgenthaler TI, Silber MH, Moore WR. Examining the frequency of stimulant misuse among patients with primary disorders of hypersomnolence: a retrospective cohort study. J Clin Sleep Med. 2016;12:659–62.

    Article  Google Scholar 

  10. Dijkstra BAG, Beurmanjer H, Goudriaan AE, Schellekens AFA, Joosten EAG. Unity in diversity: a systematic review on the GHB using population. Int J Drug Policy. 2021;94:103230.

    Article  CAS  Google Scholar 

  11. Wang YG, Swick TJ, Carter LP, Thorpy MJ, Benowitz NL. Safety overview of postmarketing and clinical experience of sodium oxybate (Xyrem): abuse, misuse, dependence, and diversion. J Clin Sleep Med. 2009;5:365–71.

    Article  CAS  Google Scholar 

  12. Sharif S, Guirguis A, Fergus S, Schifano F. The use and impact of cognitive enhancers among university students: a systematic review. Brain Sci. 2021;11:355.

    Article  CAS  Google Scholar 

  13. Maski K, Trotti LM, Kotagal S, Robert AR, Rowley JA, Hashmi SD, Watson NF. Treatment of central disorders of hypersomnolence: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2021;17:1881–93.

    Article  Google Scholar 

  14. Smith SM, Dart RC, Katz NP, et al. Classification and definition of misuse, abuse, and related events in clinical trials: ACTTION systematic review and recommendations. Pain. 2013;154:2287–96.

    Article  Google Scholar 

  15. Hasin DS, O’Brein CP, Auriacombe M, Borges G, Bucholz K, Budney A, et al. DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry. 2013;170(8):834–51. https://doi.org/10.1176/appi.ajp.2013.12060782.

    Article  Google Scholar 

  16. Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep. 2019;42:zsy183.

    Article  Google Scholar 

  17. Anaclet C, Parmentier R, Ouk K, et al. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci. 2009;29:14423–38.

    Article  CAS  Google Scholar 

  18. Parsons ME, Ganellin CR. Histamine and its receptors. Br J Pharmacol. 2006;147:S127–35.

    Article  CAS  Google Scholar 

  19. Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res. 1990;526:322–7.

    Article  CAS  Google Scholar 

  20. Harwell V, Fasinu PS. Pitolisant and other histamine-3 receptor antagonists-an update on therapeutic potentials and clinical prospects. Medicines (Basel). 2020;7:E55.

    Article  Google Scholar 

  21. Schwartz J-C. The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol. 2011;163:713–21.

    Article  CAS  Google Scholar 

  22. Lin J-S, Dauvilliers Y, Arnulf I, et al. An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin-/- mice and patients. Neurobiol Dis. 2008;30:74–83.

    Article  Google Scholar 

  23. Ligneau X, Perrin D, Landais L, et al. BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: preclinical pharmacology. J Pharmacol Exp Ther. 2007;320:365–75.

    Article  CAS  Google Scholar 

  24. Uguen M, Perrin D, Belliard S, Ligneau X, Beardsley PM, Lecomte JM, Schwartz JC. Preclinical evaluation of the abuse potential of pitolisant, a histamine H3 receptor inverse agonist/antagonist compared with modafinil. Br J Pharmacol. 2013;169:632–44.

    Article  CAS  Google Scholar 

  25. Fabara SP, Ortiz JF, Anas Sohail A, Hidalgo J, Altamimi A, Tama B, Patel UK. Efficacy of pitolisant on the treatment of narcolepsy: a systematic review. Cureus. 2021;13:e16095.

    Google Scholar 

  26. Romigi A, Vitrani G, Lo Giudice T, Centonze D, Franco V. Profile of pitolisant in the management of narcolepsy: design, development, and place in therapy. Drug Des Devel Ther. 2018;12:2665–75.

    Article  CAS  Google Scholar 

  27. Syed YY. Pitolisant: first global approval. Drugs. 2016;76:1313–8.

    Article  CAS  Google Scholar 

  28. Winter W, Wanaski SP, Patroneva A, Dayno JM. 0744 cardiac safety profile of pitolisant in patients with narcolepsy. Sleep. 2020;43:A283.

    Article  Google Scholar 

  29. Pallardo-Fernández I, Muñoz-Rodríguez JR, González-Martín C, Alguacil LF. Histamine H3 receptor gene variants associated with drug abuse in patients with cocaine use disorder. J Psychopharmacol. 2020;34:1326–30.

    Article  Google Scholar 

  30. Brabant C, Charlier Y, Navacerrada MES, Alleva L, Tirelli E. Action of pitolisant on the stimulant and rewarding effects of cocaine in mice. Eur J Pharmacol. 2016;791:552–9.

    Article  CAS  Google Scholar 

  31. Huyts B, Brabant C, Tirelli E. Pitolisant and intravenous cocaine self-administration in mice. Eur J Pharmacol. 2019;851:63–8.

    Article  CAS  Google Scholar 

  32. Kitanaka J, Kitanaka N, Hall FS, et al. In vivo evaluation of effects of histamine H3 receptor antagonists on methamphetamine-induced hyperlocomotion in mice. Brain Res. 2020;1740:146873.

    Article  CAS  Google Scholar 

  33. Krief S, Berrebi-Bertrand I, Nagmar I, et al. Pitolisant, a wake-promoting agent devoid of psychostimulant properties: preclinical comparison with amphetamine, modafinil, and solriamfetol. Pharmacol Res Perspect. 2021;9:e00855.

    Article  CAS  Google Scholar 

  34. •• Setnik B, McDonnell M, Mills C, Scart-Grès C, Robert P, Dayno JM, Schwartz J-C. Evaluation of the abuse potential of pitolisant, a selective H3-receptor antagonist/inverse agonist, for the treatment of adult patients with narcolepsy with or without cataplexy. Sleep. 2020;43:zsz252. This study evaluates the human abuse potential of pitolisant through a randomized, double blind, placebo-controlled, crossover design study of 38 nondependent stimulant users. This article is highly of interest as it is currently the only published study on the human abuse potential of pitolisant. The study design is consistent with FDA guidance for abuse potential assessment.

  35. Jazz Pharmaceuticals (2019) sunosi.ca.PM-en.pdf. In: Jazz Pharmaceuticals . Jazz Pharmaceuticals, Inc.; Palo Alto, CA: 2019. Inc. SunosiTM (solriamfetol) tablets prescribing information. https://pp.jazzpharma.com/pi/sunosi.ca.PM-en.pdf. Accessed 10 May 2022.

  36. Schweitzer PK, Mayer G, Rosenberg R, Malhotra A, Zammit GK, Gotfried M, Chandler P, Baladi M, Strohl KP. Randomized controlled trial of solriamfetol for excessive daytime sleepiness in OSA. Chest. 2021;160:307–18.

    Article  CAS  Google Scholar 

  37. Weaver TE, Drake CL, Benes H, et al. Effects of solriamfetol on quality-of-life measures from a 12-week phase 3 randomized controlled trial. Ann Am Thorac Soc. 2020;17:998–1007.

    Article  Google Scholar 

  38. Malhotra A, Shapiro C, Pepin J-L, et al. Long-term study of the safety and maintenance of efficacy of solriamfetol (JZP-110) in the treatment of excessive sleepiness in participants with narcolepsy or obstructive sleep apnea. Sleep. 2019;43:zsz220.

    Article  Google Scholar 

  39. Videnovic A, Amara AW, Comella C, et al. Solriamfetol for excessive daytime sleepiness in Parkinson’s disease: phase 2 proof-of-concept trial. Mov Disord. 2021;36:2408–12.

    Article  CAS  Google Scholar 

  40. Kaufman MB. Pharmaceutical approval update. P T. 2019;44:337–9.

    Google Scholar 

  41. Wisor J. Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol. 2013;4:139.

    Article  Google Scholar 

  42. Baladi MG, Forster MJ, Gatch MB, Mailman RB, Hyman DL, Carter LP, Janowsky A. Characterization of the neurochemical and behavioral effects of solriamfetol (JZP-110), a selective dopamine and norepinephrine reuptake inhibitor. J Pharmacol Exp Ther. 2018;366:367–76.

    Article  CAS  Google Scholar 

  43. Hasan S, Pradervand S, Ahnaou A, Drinkenburg W, Tafti M, Franken P. How to keep the brain awake? The complex molecular pharmacogenetics of wake promotion. Neuropsychopharmacol. 2009;34:1625–40.

    Article  CAS  Google Scholar 

  44. •• Carter LP, Henningfield JE, Wang YG, Lu Y, Kelsh D, Vince B, Sellers E. A randomized, double-blind, placebo-controlled, crossover study to evaluate the human abuse liability of solriamfetol, a selective dopamine and norepinephrine reuptake inhibitor. J Psychopharmacol. 2018;32:1351–61. This study evaluates the human abuse potential of solriamfetol in a randomized, double blind, placebo-controlled, crossover design study of 43 adults with a recent history of recreational polydrug use. This article is highly of interest as it currently the only published study on the human abuse potential of solriamfetol. The study design is consistent with FDA guidance for abuse potential assessment.

    Article  CAS  Google Scholar 

  45. Whiting PJ. GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today. 2003;8:445–50.

    Article  CAS  Google Scholar 

  46. Trudell JR, Messing RO, Mayfield J, Harris RA. Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci. 2014;35:317–23.

    Article  CAS  Google Scholar 

  47. Morgenthaler TI, Kapur VK, Brown T, et al. Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin an American Academy of Sleep Medicine report. Sleep. 2007;30:1705–11.

    Article  Google Scholar 

  48. Roth T, Dauvilliers Y, Guinta D, Alvarez-Horine S, Dynin E, Black J. Effect of sodium oxybate on disrupted nighttime sleep in patients with narcolepsy. J Sleep Res. 2017;26:407–14.

    Article  Google Scholar 

  49. Boscolo-Berto R, Viel G, Montagnese S, Raduazzo DI, Ferrara SD, Dauvilliers Y. Narcolepsy and effectiveness of gamma-hydroxybutyrate (GHB): a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2012;16:431–43.

    Article  Google Scholar 

  50. Xu X-M, Wei Y-D, Liu Y, Li Z-X. Gamma-hydroxybutyrate (GHB) for narcolepsy in adults: an updated systematic review and meta-analysis. Sleep Med. 2019;64:62–70.

    Article  CAS  Google Scholar 

  51. Maski K, Trotti LM, Kotagal S, Robert AR, Swick TJ, Rowley JA, et al. Treatment of central disorders of hypersomnolence: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med. 2021;17(9):1895–945. https://doi.org/10.5664/jcsm.9326.

    Article  Google Scholar 

  52. Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol. 2017;152:89–113.

    Article  CAS  Google Scholar 

  53. Huang Y-S, Guilleminault C. Narcolepsy: action of two γ-aminobutyric acid type B agonists, baclofen and sodium oxybate. Pediatr Neurol. 2009;41:9–16.

    Article  Google Scholar 

  54. Cruz HG, Ivanova T, Lunn M-L, Stoffel M, Slesinger PA, Lüscher C. Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat Neurosci. 2004;7:153–9.

    Article  CAS  Google Scholar 

  55. US Xyrem® Multicenter Study Group. A randomized, double blind, placebo-controlled multicenter trial comparing the effects of three doses of orally administered sodium oxybate with placebo for the treatment of narcolepsy. Sleep. 2002;25:42–9.

    Google Scholar 

  56. Plazzi G, Ruoff C, Lecendreux M, Dauvilliers Y, Rosen CL, Black J, Parvataneni R, Guinta D, Wang YG, Mignot E. Treatment of paediatric narcolepsy with sodium oxybate: a double-blind, placebo-controlled, randomised-withdrawal multicentre study and open-label investigation. Lancet Child Adolesc Health. 2018;2:483–94.

    Article  Google Scholar 

  57. Robinson DM, Keating GM. Sodium oxybate: a review of its use in the management of narcolepsy. CNS Drugs. 2007;21:337–54.

    Article  CAS  Google Scholar 

  58. Carter LP, Pardi D, Gorsline J, Griffiths RR. Illicit gamma-hydroxybutyrate (GHB) and pharmaceutical sodium oxybate (Xyrem): differences in characteristics and misuse. Drug Alcohol Depend. 2009;104:1–10.

    Article  CAS  Google Scholar 

  59. Wu J, Juhaeri J. The US Food and Drug Administration’s Risk Evaluation and Mitigation Strategy (REMS) program - current status and future direction. Clin Ther. 2016;38:2526–32.

    Article  Google Scholar 

  60. Oliveto A, Gentry WB, Pruzinsky R, Gonsai K, Kosten TR, Martell B, Poling J. Behavioral effects of gamma-hydroxybutyrate (GHB) in humans. Behav Pharmacol. 2010;21:332–42.

    Article  CAS  Google Scholar 

  61. Weerts EM, Goodwin AK, Griffiths RR, Brown PR, Froestl W, Jakobs C, Gibson KM. Spontaneous and precipitated withdrawal after chronic intragastric administration of gamma-hydroxybutyrate (GHB) in baboons. Psychopharmacology. 2005;179:678–87.

    Article  CAS  Google Scholar 

  62. Goodwin AK, Griffiths RR, Brown PR, Froestl W, Jakobs C, Gibson KM, Weerts EM. Chronic intragastric administration of gamma-butyrolactone produces physical dependence in baboons. Psychopharmacology. 2006;189:71–82.

    Article  CAS  Google Scholar 

  63. Brunt TM, Koeter MW, Hertoghs N, van Noorden MS, van den Brink W. Sociodemographic and substance use characteristics of gamma hydroxybutyrate (GHB) dependent inpatients and associations with dependence severity. Drug Alcohol Depend. 2013;131:316–9.

    Article  CAS  Google Scholar 

  64. Martellotta MC, Cossu G, Fattore L, Gessa GL, Fratta W. Intravenous self-administration of gamma-hydroxybutyric acid in drug-naive mice. Eur Neuropsychopharmacol. 1998;8:293–6.

    Article  CAS  Google Scholar 

  65. Martellotta MC, Fattore L, Cossu G, Fratta W. Rewarding properties of gamma-hydroxybutyric acid: an evaluation through place preference paradigm. Psychopharmacology. 1997;132:1–5.

    Article  CAS  Google Scholar 

  66. Colombo G, Agabio R, Diaz G, Fà M, Lobina C, Reali R, Gessa GL. γ-Hydroxybutyric acid intake in ethanol-preferring sP and -nonpreferring sNP rats. Physiol Behav. 1998;64:197–202.

    Article  CAS  Google Scholar 

  67. Kamal RM, van Noorden MS, Franzek E, Dijkstra BAG, Loonen AJM, De Jong CAJ. The neurobiological mechanisms of gamma-hydroxybutyrate dependence and withdrawal and their clinical relevance: a review. Neuropsychobiology. 2016;73:65–80.

    Article  CAS  Google Scholar 

  68. Carter LP, Richards BD, Mintzer MZ, Griffiths RR. Relative abuse liability of GHB in humans: a comparison of psychomotor, subjective, and cognitive effects of supratherapeutic doses of triazolam, pentobarbital, and GHB. Neuropsychopharmacol. 2006;31:2537–51.

    Article  CAS  Google Scholar 

  69. Johnson MW, Griffiths RR. Comparative abuse liability of GHB and ethanol in humans. Exp Clin Psychopharmacol. 2013;21(2):112–23. https://doi.org/10.1037/a0031692.

    Article  CAS  Google Scholar 

  70. •• Mayer G, Plazzi G, Iranzo Á, Ortega-Albás J, Quinnell T, Pesch H, Serralheiro P, Schlit A-F, Wuiame D, Bentz JWG. Long-term compliance, safety, and tolerability of sodium oxybate treatment in patients with narcolepsy type 1: a postauthorization, noninterventional surveillance study. Sleep. 2018;41:zsy128. This study evaluates the safety and abuse potential of SXB in sleep disordered patients through the largest post authorization, surveillance study to date. This investigation provides long-term, real-world data on the use of SXB in clinical practice and helps inform the overall safety and abuse potential of SXB alongside clinical trial data. This study is limited by its observational nature and cannot be directly compared to clinical trial data, though the safety profile of SXB observed in this study is similar to previous reports.

  71. • Strunc MJ, Black J, Lillaney P, Profant J, Mills S, Bujanover S, Thorpy MJ. The Xyrem® (sodium oxybate) Risk Evaluation and Mitigation Strategy (REMS) program in the USA: results from 2016 to 2017. Drugs - Real World Outcomes. 2021;8:15–28. This study evaluates the REMS Program and its efficacy in providing SXB to patients with medical needs in a controlled manner. This study highlights the real-world systems in place that can effectively minimize the safety risks associated with SXB and helps inform the overall safety and abuse potential of SXB when it is properly prescribed.

    Article  Google Scholar 

  72. Iranzo A, Serralheiro P, Schuller J-C, Schlit A-F, Bentz JWG. Evaluation of the effectiveness of the risk minimization measures of sodium oxybate in the European Union. Drugs - Real World Outcomes. 2020;7:307–15.

    Article  Google Scholar 

  73. Modafinil. LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda: National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Modafinil. [Updated 2021 Aug 18]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548274/.

  74. Hashemian SM, Farhadi T. A review on modafinil: the characteristics, function, and use in critical care. J Drug Assess. 2020;9(1):82–6. https://doi.org/10.1080/21556660.2020.1745209.

    Article  Google Scholar 

  75. Broughton RJ, Fleming JA, George CF, Hill JD, Kryger MH, Moldofsky H, Montplaisir JY, Morehouse RL, Moscovitch A, Murphy WF. Randomized, double-blind, placebo-controlled crossover trial of modafinil in the treatment of excessive daytime sleepiness in narcolepsy. Neurology. 1997;49:444–51.

    Article  CAS  Google Scholar 

  76. US Modafinil in Narcolepsy Multicenter Study Group. Randomized trial of modafinil as a treatment for the excessive daytime somnolence of narcolepsy: US Modafinil in Narcolepsy Multicenter Study Group. Neurology. 2000;54:1166–75.

    Article  Google Scholar 

  77. Kumar R. Approved and investigational uses of modafinil: an evidence-based review. Drugs. 2008;68:1803–39.

    Article  CAS  Google Scholar 

  78. Borghol A, Aucoin M, Onor I, Jamero D, Hawawini F. Modafinil for the improvement of patient outcomes following traumatic brain injury. Innov Clin Neurosci. 2018;15:17–23.

    Google Scholar 

  79. Ishizuka T, Murotani T, Yamatodani A. Action of modafinil through histaminergic and orexinergic neurons. Vitam Horm. 2012;89:259–78.

    Article  CAS  Google Scholar 

  80. Mahler SV, Hensley-Simon M, Tahsili-Fahadan P, LaLumiere RT, Thomas C, Fallon RV, Kalivas PW, Aston-Jones G. Modafinil attenuates reinstatement of cocaine seeking: role for cystine-glutamate exchange and metabotropic glutamate receptors. Addict Biol. 2014;19:49–60.

    Article  CAS  Google Scholar 

  81. O’brien CP, Dackis CA, Kampman K. Does modafinil produce euphoria? AJP. 2006;163:1109–1109.

    Article  Google Scholar 

  82. Schmitt KC, Reith MEA. The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors. PLoS One. 2011;6:e25790.

    Article  CAS  Google Scholar 

  83. Suhayl N, Burdette W, Kathryn S. Absence of mood switch with and tolerance to modafinil: a replication study from a large private practice. J Affect Disord. 2006. https://doi.org/10.1016/j.jad.2006.01.010.

    Article  Google Scholar 

  84. Mitler M, Harsh J, Hirshkowitz M, Guilleminault C. Long-term efficacy and safety of modafinil (PROVIGIL(R)) for the treatment of excessive daytime sleepiness associated with narcolepsy. Sleep Med. 2000;1:231–43.

    Article  CAS  Google Scholar 

  85. Krishnan R, Chary KV. A rare case modafinil dependence. J Pharmacol Pharmacother. 2015;6:49–50.

    Article  Google Scholar 

  86. Greenblatt K, Adams N. Modafinil. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2022. [Updated 2022 Feb 22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK531476/.

  87. Carstairs SD, Urquhart A, Hoffman J, Clark RF, Cantrell FL. A retrospective review of supratherapeutic modafinil exposures. J Med Toxicol. 2010;6:307–10.

    Article  CAS  Google Scholar 

  88. Loland CJ, Mereu M, Okunola OM, et al. R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol Psychiatry. 2012;72:405–13.

    Article  CAS  Google Scholar 

  89. Paterson NE, Fedolak A, Olivier B, Hanania T, Ghavami A, Caldarone B. Psychostimulant-like discriminative stimulus and locomotor sensitization properties of the wake-promoting agent modafinil in rodents. Pharmacol Biochem Behav. 2010;95:449–56.

    Article  CAS  Google Scholar 

  90. Gold LH, Balster RL. Evaluation of the cocaine-like discriminative stimulus effects and reinforcing effects of modafinil. Psychopharmacology. 1996;126:286–92.

    Article  CAS  Google Scholar 

  91. Newman JL, Negus SS, Lozama A, Prisinzano TE, Mello NK. Behavioral evaluation of modafinil and the abuse-related effects of cocaine in rhesus monkeys. Exp Clin Psychopharmacol. 2010;18:395–408.

    Article  CAS  Google Scholar 

  92. Heal DJ, Buckley NW, Gosden J, Slater N, France CP, Hackett D. A preclinical evaluation of the discriminative and reinforcing properties of lisdexamfetamine in comparison to D-amfetamine, methylphenidate and modafinil. Neuropharmacology. 2013;73:348–58.

    Article  CAS  Google Scholar 

  93. Bernardi RE, Lewis JR, Lattal KM, Berger SP. Modafinil reinstates a cocaine conditioned place preference following extinction in rats. Behav Brain Res. 2009;204:250–3.

    Article  CAS  Google Scholar 

  94. Wuo-Silva R, Fukushiro DF, Borçoi AR, et al. Addictive potential of modafinil and cross-sensitization with cocaine: a pre-clinical study. Addict Biol. 2011;16:565–79.

    Article  CAS  Google Scholar 

  95. Shuman T, Cai DJ, Sage JR, Anagnostaras SG. Interactions between modafinil and cocaine during the induction of conditioned place preference and locomotor sensitization in mice: implications for addiction. Behav Brain Res. 2012;235:105–12.

    Article  CAS  Google Scholar 

  96. Wuo-Silva R, Fukushiro DF, Hollais AW, et al. Modafinil induces rapid-onset behavioral sensitization and cross-sensitization with cocaine in mice: implications for the addictive potential of modafinil. Front Pharmacol. 2016;7:420. https://doi.org/10.3389/fphar.2016.00420.

    Article  CAS  Google Scholar 

  97. Wuo-Silva R, Fukushiro-Lopes DF, Fialho BP, et al. Participation of dopamine D1 and D2 receptors in the rapid-onset behavioral sensitization to modafinil. Front Pharmacol. 2019;10:211. https://doi.org/10.3389/fphar.2019.00211.

    Article  CAS  Google Scholar 

  98. Jasinski DR, Kovacević-Ristanović R. Evaluation of the abuse liability of modafinil and other drugs for excessive daytime sleepiness associated with narcolepsy. Clin Neuropharmacol. 2000;23:149–56.

    Article  CAS  Google Scholar 

  99. Malcolm R, Swayngim K, Donovan JL, et al. Modafinil and cocaine interactions. Am J Drug Alcohol Abuse. 2006;32:577–87.

    Article  Google Scholar 

  100. Dackis CA, Lynch KG, Yu E, Samaha FF, Kampman KM, Cornish JW, Rowan A, Poole S, White L, O’Brien CP. Modafinil and cocaine: a double-blind, placebo-controlled drug interaction study. Drug Alcohol Depend. 2003;70:29–37.

    Article  CAS  Google Scholar 

  101. Anderson AL, Li S-H, Biswas K, et al. Modafinil for the treatment of methamphetamine dependence. Drug Alcohol Depend. 2012;120:135–41.

    Article  CAS  Google Scholar 

  102. Shearer J, Darke S, Rodgers C, Slade T, van Beek I, Lewis J, Brady D, McKetin R, Mattick RP, Wodak A. A double-blind, placebo-controlled trial of modafinil (200 mg/day) for methamphetamine dependence. Addiction. 2009;104:224–33.

    Article  Google Scholar 

  103. Kim W, Tateno A, Arakawa R, Sakayori T, Ikeda Y, Suzuki H, Okubo Y. In vivo activity of modafinil on dopamine transporter measured with positron emission tomography and [18F]FE-PE2I. Int J Neuropsychopharmacol. 2014;17:697–703.

    Article  CAS  Google Scholar 

  104. Dauvilliers Y, Bassetti C, Lammers GJ, Arnulf I, Mayer G, Rodenbeck A, Lehert P, Ding C-L, Lecomte J-M, Schwartz J-C. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol. 2013;12:1068–75.

    Article  CAS  Google Scholar 

  105. Myrick H, Malcolm R, Taylor B, LaRowe S. Modafinil: preclinical, clinical, and post-marketing surveillance—a review of abuse liability issues. Ann Clin Psychiatry. 2004;16:101–9.

    Article  Google Scholar 

  106. Cengiz Mete M, Şenormancı Ö, Saraçlı Ö, Atasoy N, Atik L. Compulsive modafinil use in a patient with a history of alcohol use disorder. Gen Hosp Psychiatry. 2015;37:e7-8.

    Article  Google Scholar 

  107. Kate N, Grover S, Ghormode D. Dependence on supratherapeutic doses of modafinil: a case report. Prim Care Companion CNS Disord. 2012;14:PCC.11l01333.

    Google Scholar 

  108. Alacam H, Basay O, Tumkaya S, Mart M, Kar G. Modafinil dependence: a case with attention-deficit/hyperactivity disorder. Psychiatry Investig. 2018;15:424–7.

    Article  CAS  Google Scholar 

  109. Auger RR, Goodman SH, Silber MH, Krahn LE, Pankratz VS, Slocumb NL. Risks of high-dose stimulants in the treatment of disorders of excessive somnolence: a case-control study. Sleep. 2005;28:667–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Plante.

Ethics declarations

Conflict of Interest

Dr. Plante has served as a consultant for Teva Pharmaceuticals Australia, a consultant for Harmony Biosciences, and consultant/medical advisory board member for Jazz Pharmaceuticals. Dr. Plante has also received research support from the AASM Foundation, NIA, NINR, the Great Lakes Center for Occupational Health and Safety, and the Madison Educational Partnership. Dr. Plante also has a patent application pending not related to this work. Mr. Ngo has no conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This review did not directly involve human participants or animals and is thus exempt from Institutional Review Board or Institutional Animal Care and Use Committee oversight.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been edited by Dr. Alon Avidan, as Dr. David Plante is Section Editor for the topical collection Hypersomnia Disorders.

This article is part of the Topical Collection on Hypersomnia Disorders

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, Q., Plante, D.T. An Update on the Misuse and Abuse Potential of Pharmacological Treatments for Central Disorders of Hypersomnolence. Curr Sleep Medicine Rep 8, 147–159 (2022). https://doi.org/10.1007/s40675-022-00227-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-022-00227-4

Keywords

Navigation