Skip to main content

Advertisement

Log in

Reciprocal Regulation of Circadian Rhythms and Immune Function

  • Circadian Rhythm Disorders (F Turek, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Although several papers have described circadian regulation of the immune function, our goal is to address the reciprocal interactions between the circadian and immune systems.

Recent findings

Timekeeping mechanisms have evolved to regulate energy balance in the face of predictable environmental changes. Mounting an immune response is energetically expensive; thus, it is beneficial to allocate resources to immunity when potential exposure to pathogens is highest. Temporally gated activities such as social interactions and eating coincide with increased pathogen exposure. Therefore, many components of immunity are regulated by the circadian system to maximize energy efficiencies. Reciprocally, it is beneficial for immune status to inform the circadian system to ensure adequate rest and recovery from infection and injury. Although the mechanisms controlling these processes remain unspecified, it is a critical relationship important for health and disease.

Summary

We highlight several examples of circadian gating of immune function. We further discuss the bidirectional pathways through which circadian disruption via light at night, jet lag, shift work, and sleep disruption contribute to reduced immune capacity, and how immune challenge can, in turn, alter circadian function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Demas GE, Chefer V, Talan MI, Nelson RJ. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am J Physiol. 1997;273:R1631–7.

    CAS  PubMed  Google Scholar 

  2. Muehlenbein MP, Hirschtick JL, Bonner JZ, Swartz AM. Toward quantifying the usage costs of human immunity: altered metabolic rates and hormone levels during acute immune activation in men. Am J Hum Biol. 2010;22:546–56.

    Article  PubMed  Google Scholar 

  3. Halberg F, Johnson EA, Brown BW, Bittner JJ. Susceptibility rhythm to E. coli endotoxin and bioassay. Exp Biol Med. 1960;103:142–4.

    Article  CAS  Google Scholar 

  4. • Alamili M, Bendtzen K, Lykkesfeldt J, Rosenberg J, Gögenur I. Pronounced inflammatory response to endotoxaemia during nighttime: a randomised cross-over trial. PLoS One. 2014;9:e87413. This paper showed marked circadian differences to endotoxin treatment in humans.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fonken LK, Weber MD, Daut RA, Kitt MM, Frank MG, Watkins LR, Maier SF. Stress-induced neuroinflammatory priming is time of day dependent. Psychoneuroendocrinology. 2016;66:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Waterhouse J, Reilly T, Atkinson G, Edwards B. Jet lag: trends and coping strategies. Lancet. 2007;369:1117–29.

    Article  PubMed  Google Scholar 

  7. Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24:90–9.

  8. Do MT, Yau KW. Intrinsically photosensitive retinal ganglion cells. Physiol Rev. 2010;90:1547–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Petrovsky N. Towards a unified model of neuroendocrine–immune interaction. Immunol Cell Biol. 2001;79:350–7.

    Article  CAS  PubMed  Google Scholar 

  10. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13:190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun. 2015;45:1–9. Demonstrated that microglial cytokine production varies in a circadian fashion and contributes to inflammatory responses across the day.

    Article  CAS  Google Scholar 

  12. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci. 2009;106:21407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci. 2012;109:12662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu J, Mankani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, Sun ZS. The circadian clock period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun. 2006;74:4750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang NS, McHeyzer-Williams LJ, Okitsu SL, Burris TP, Reiner SL, McHeyzer-Williams MG. Divergent transcriptional programming of class-specific B cell memory by T-bet and ROR [alpha]. Nat Immunol. 2012;13:604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science. 2013;341:1483–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon AS. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci. 2012;109:582–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gagnidze K, Hajdarovic KH, Moskalenko M, Karatsoreos IN, McEwen BS, Bulloch K. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis. Proc Natl Acad Sci. 2016;113:5730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4:163–73.

    Article  CAS  PubMed  Google Scholar 

  20. So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci. 2009;106:17582–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Charmandari E, Chrousos GP, Lambrou GI, Pavlaki A, Koide H, Ng SS, Kino T. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One. 2011;6:e25612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kino T, Chrousos GP. Acetylation-mediated epigenetic regulation of glucocorticoid receptor activity: circadian rhythm-associated alterations of glucocorticoid actions in target tissues. Mol Cell Endocrinol. 2011;336:23–30.

    Article  CAS  PubMed  Google Scholar 

  23. Lamia KA, Papp SJ, Ruth TY, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011;480:552–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. • Goriki A, Hatanaka F, Myung J, Kim JK, Yoritaka T, Tanoue S, Abe T, Kiyonari H, Fujimoto K, Kato Y, Todo T, et al. PLoS Biol. 2014;12:e1001839. This paper describes a new clock component (CHRONO) that modulates glucocorticoids.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Skwarlo-Sonta K, Rosolowska-Huszcz D, Sidork-Lewicz E. Diurnal changes in certain immunity indices and plasma corticosterone concentration in white Leghorn chickens. Acta Physiol Pol. 1983;34:445–56.

    CAS  PubMed  Google Scholar 

  26. Skwarlo-Sonta K, Sotowska-Brochocka J, Rosolowska-Huszcz D, Pawlowska-Wojewodka E, Gajewska A, Stepien D, Kochman K. Effect of prolactin on the diurnal changes in immune parameters and plasma corticosterone in white Leghorn chickens. Acta Endocrinol. 1987;116:172–8.

    CAS  PubMed  Google Scholar 

  27. Skwarlo-Sonta K, Thaela MJ, Gluchowska B, Stepien D, Jagura M. Effect of dose and time of melatonin injections on the diurnal rhythm of immunity in chicken. J Pineal Res. 1991;10:30–5.

    Article  CAS  PubMed  Google Scholar 

  28. Kirby JD, Froman DP. Research note: evaluation of humoral and delayed hypersensitivity responses in cockerels reared under constant light or a twelve hour light: twelve hour dark photoperiod. Poult Sci. 1991;70:2375–8.

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez AB, Marchena JM, Nogales G, Duran J, Barriga C. Correlation between the circadian rhythm of melatonin, phagocytosis, and superoxide anion levels in ring dove heterophils. J Pineal Res. 1999;26:35–42.

    Article  CAS  PubMed  Google Scholar 

  30. Terron MP, Cubero J, Marchena JM, Barriga C, Rodriguez AB. Melatonin and aging: in vitro effect of young and mature ring dove physiological concentrations of melatonin on the phagocytic function of heterophils from old ring dove. Exp Gerontol. 2002;37:421–6.

    Article  CAS  PubMed  Google Scholar 

  31. Paredes SD, Terron MP, Marchena MA, Barriga C, Pariente JA, Reiter RJ, Rodriguez AB. Effect of exogenous melatonin on viability, ingestion capacity, and free-radical scavenging in heterophils from young and old ringdoves (Streptopelia risoria). Mol Cell Biochem. 2007a;304:305–14.

    Article  CAS  PubMed  Google Scholar 

  32. Paredes SD, Terron MP, Marchena AM, Barriga C, Pariente JA, Reiter RJ, Rodriguez AB. Tryptophan modulates cell viability, phagocytosis and oxidative metabolism in old ringdoves. Basic Clin Pharmacol Toxicol. 2007b;101:56–62.

    Article  CAS  PubMed  Google Scholar 

  33. Brennan CP, Hendricks III GL, El-Sheikh TM, Mashaly MM. Melatonin and the enhancement of immune responses in immature male chickens. Poult Sci. 2002;81:371–5.

    Article  CAS  PubMed  Google Scholar 

  34. Naidu KS, Morgan LW, Bailey MJ. Inflammation in the avian spleen: timing is everything. BMC Mol Biol. 2010;11:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Majewski P, Adamska I, Pawlak J, Baranska A, Skwarlo-Sonta K. Seasonality of pineal gland activity and immune functions in chicken. J Pineal Res. 2005;39:66–72.

    Article  CAS  PubMed  Google Scholar 

  36. Siopes TD, Underwood HA. Diurnal variation in the cellular and humoral immune responses of Japanese quail: role of melatonin. Gen Comp Endocrinol. 2008;158:245–9.

    Article  CAS  PubMed  Google Scholar 

  37. Moore CB, Siopes TD. Effects of lighting conditions and melatonin supplementation on the cellular and humoral immune responses in Japanese quail Coturnix Coturnix japonica. Gen Comp Endocrinol. 2000;119:95–104.

    Article  CAS  PubMed  Google Scholar 

  38. Buehler DM, Koolhaas A, Van't Hof TJ, Schwabl I, Dekinga A, Piersma T, Tieleman BI. No evidence for melatonin-linked immunoenhancement over the annual cycle of an avian species. J Comp Physiol. 2009;195:445–51.

    Article  CAS  Google Scholar 

  39. Nevid NJ, Meier AH. A day-night rhythm of immune activity during scale allograft rejection in the gulf killifish, Fundulus grandis. Dev Comp Immunol. 1993;17:221–8.

    Article  CAS  PubMed  Google Scholar 

  40. Esteban MA, Cuesta A, Rodríguez A, Meseguer J. Effect of photoperiod on the fish innate immune system: a link between fish pineal gland and the immune system. J Pineal Res. 2006;41:261–6.

    Article  CAS  PubMed  Google Scholar 

  41. Cuesta A, Cerezuela R, Esteban MA, Meseguer J. In vivo actions of melatonin on the innate immune parameters in the teleost fish gilthead seabream. J Pineal Res. 2008;45:70–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kaplan JE, Chrenek RD, Morash JG, Ruksznis CM, Hannum LG. Rhythmic patterns in phagocytosis and the production of reactive oxygen species by zebrafish leukocytes. Comp Biochem Physiol A. 2008;151:726–30.

    Article  CAS  Google Scholar 

  43. Ren D, Li Y, Hu B, Wang H, Hu B. Melatonin regulates the rhythmic migration of neutrophils in live zebrafish. J Pineal Res. 2015;58:452–60.

    Article  CAS  PubMed  Google Scholar 

  44. Lazado CC, Lund I, Pedersen PB, Nguyen HQ. Humoral and mucosal defense molecules rhythmically oscillate during a light-dark cycle in permit, Trachinotus falcatus. Fish Shellfish Immunol. 2015;47:902–12.

    Article  CAS  PubMed  Google Scholar 

  45. Tripathi MK, Singh R, Pati AK. Daily and seasonal rhythms in immune responses of splenocytes in the freshwater snake, Natrix piscator. PLoS One. 2015;10:e0116588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cai F, Dickson DH. Diurnal change and prolonged dark effect on myeloid bodies in the retinal pigment epithelium of the leopard frog. Curr Eye Res. 1994;13:611–7.

    Article  CAS  PubMed  Google Scholar 

  47. Reiter RJ. Melatonin: the chemical expression of darkness. Mol Cell Endocrinol. 1991;79:C153–8.

    Article  CAS  PubMed  Google Scholar 

  48. Arendt J. Melatonin and human rhythms. Chronobiol Int. 2006;23:21–37.

    Article  CAS  PubMed  Google Scholar 

  49. Reiter RJ. Melatonin. Endocrine. 2005;27:87–212.

    Article  CAS  Google Scholar 

  50. Weil ZM, Borniger JC, Cisse YM, Abi Salloum BA, Nelson RJ. Neuroendocrine control of photoperiodic changes in immune function. Front Neuroendocrinol. 2015;37:108–18.

    Article  CAS  PubMed  Google Scholar 

  51. •• Farez MF, Mascanfroni ID, Méndez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, Aguirre ME, Patel B, Ysrraelit MC, Zhu C, Kuchroo VK. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell. 2015;162:1338–52. This paper demonstrated a molecular pathway by which melatonin alters immune parameters in multiple sclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ralph CL, Mull D, Lynch HJ, Hedlund L. A melatonin rhythm persists in rat pineals in darkness. Endocrinology. 1971;89:1361–6.

    Article  CAS  PubMed  Google Scholar 

  53. Brainard GC, Lewy AJ, Menaker M, Fredrickson RH, Miller LS, Weleber RG, Cassone V, Hudson D. Dose-response relationship between light irradiance and the suppression of plasma melatonin in human volunteers. Brain Res. 1988;454:212–8.

    Article  CAS  PubMed  Google Scholar 

  54. McIntyre IM, Norman TR, Burrows GD, Armstrong SM. Human melatonin suppression by light is intensity dependent. J Pineal Res. 1989;6:149–56.

    Article  CAS  PubMed  Google Scholar 

  55. Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol. 2000;526:695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brainard GC, Richardson BA, Petterborg LJ, Reiter RJ. The effect of different light intensities on pineal melatonin content. Brain Res. 1982;233:75–81.

    Article  CAS  PubMed  Google Scholar 

  57. Zachmann A, Knijff SCM, Ali MA, Anctil M. Effects of photoperiod and different intensities of light exposure on melatonin levels in the blood, pineal organ, and retina of the brook trout (Salvelinus fontinalis Mitchill). Can J Zool. 1992;70:25–9.

    Article  CAS  Google Scholar 

  58. Brainard GC, Richardson BA, King TS, Matthews SA, Reiter RJ. The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: a dose-response relationship. Endocrinology. 1983;113:293–6.

    Article  CAS  PubMed  Google Scholar 

  59. • Zeitzer JM, Fisicaro RA, Ruby NF, Heller HC. Millisecond flashes of light phase delay the human circadian clock during sleep. J Biol Rhythm. 2014;25:370–6. Demonstrated that ~0.24 sec of light at night during sleep can alter the human circadian clock.

    Article  Google Scholar 

  60. Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci. 2013;14:8638–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Esteban MA, Cuesta A, Chaves-Pozo E, Meseguer J. Influence of melatonin on the immune system of fish: a review. Int J Mol Sci. 2013;14:7979–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Srinivasan V, Maestroni GJM, Cardinali DP, Esquifino A, Pandi-Perumal S, Miller S. Melatonin, immune function and aging. Immun Ageing. 2005;2:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93:350–84.

    Article  CAS  PubMed  Google Scholar 

  64. Harasimowicz J, Marques KL, Silva AF, Costa RC, Prior JA, Rodriques SS, Santos JL. Chemiluminometric evaluation of melatonin and selected melatonin precursors’ interaction with reactive oxygen and nitrogen species. Anal Biochem. 2012;420:1–6.

    Article  CAS  PubMed  Google Scholar 

  65. Mahal HS, Sharma HS, Mukherjee T. Antioxidant properties of melatonin: a pulse radiolysis study. Free Radic Biol Med. 1999;16:557–65.

    Article  Google Scholar 

  66. Stasica P, Ulanski P, Rosiak JM. Melatonin as a hydroxyl radical scavenger. J Pineal Res. 1998;25:65–6.

    Article  CAS  PubMed  Google Scholar 

  67. Bedrosian TA, Fonken LK, Walton JC, Nelson RJ. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol Lett. 2011;7:468–71.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Oishi K, Shibusawa K, Kakazu H, Kuriyama T, Ohkura N, Machida K. Extended light exposure suppresses nocturnal increases in cytotoxic activity of splenic natural killer cells in rats. Biol Rhythm Res. 2006;37:29–35.

    Article  Google Scholar 

  69. Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. Int J Biochem Cell Biol. 2006;38:313–6.

    Article  CAS  PubMed  Google Scholar 

  70. Poeggeler B. Melatonin and the light-dark zeitgeber in vertebrates, invertebrates and unicellular organisms. Experientia. 1993;49:611–3.

    Article  CAS  PubMed  Google Scholar 

  71. Reiter RJ. The melatonin rhythm—both clock and calendar. Experientia. 1993;49:654–64.

    Article  CAS  PubMed  Google Scholar 

  72. Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev. 2010;85:607–23.

    PubMed  Google Scholar 

  73. Maestroni GJM, Conti A, Pierpaoli W. Role of the pineal-gland in immunity-circadian synthesis and release of melatonin modulates the antibody-response and antagonizes the immunosuppressive effect of corticosterone. J Neuroimmunol. 1986;13:19–30.

    Article  CAS  PubMed  Google Scholar 

  74. Maestroni GJ, Sulli A, Pizzorni C, Villaggio B, Cutolo M. Melatonin in rheumatoid arthritis: synovial macrophages show melatonin receptors. Ann N Y Acad Sci. 2002;966:271–5.

    Article  CAS  PubMed  Google Scholar 

  75. Pozo D, Garcia-Maurino S, Guerrero JM, Calvo JR. mRNA expression of nuclear receptor RZR/RORalpha, melatonin membrane receptor MT, and hydroxindole-O-methyltransferase in different populations of human immune cells. J Pineal Res. 2004;37:48–54.

    Article  CAS  PubMed  Google Scholar 

  76. Carrillo-Vico A, Garcia-Perganeda A, Naji L, Calvo JR, Romero MP, Guerrero JM. Expression of membrane and nuclear melatonin receptor mRNA and protein in the mouse immune system. Cell Mol Life Sci. 2003;60:2272–8.

    Article  CAS  PubMed  Google Scholar 

  77. Drazen DL, Nelson RJ. Melatonin receptor subtype MT2 (Mel 1b) and not MT1 (Mel 1a) is associated with melatonin-induced enhancement of cell-mediated and humoral immunity. Neuroendocrinology. 2001;74:178–84.

    Article  CAS  PubMed  Google Scholar 

  78. Guerrero JM, Reiter RJ. Melatonin-immune system relationships. Curr Top Med Chem. 2002;2:167–79.

    Article  CAS  PubMed  Google Scholar 

  79. Cardinali DP, Esquifino AI, Srinivasan V, Pandi-Perumal SR. Melatonin and the immune system in aging. Neuroimmunomodulation. 2008;15:272–8.

    Article  CAS  PubMed  Google Scholar 

  80. Kireev RA, Tresguerres AC, Garcia C, Arriznavarreta C, Vara E, Tresguerres JAF. Melatonin is able to prevent the liver of old castrated female rats from oxidative and pro-inflammatory damage. J Pineal Res. 2008;45:394–402.

    Article  CAS  PubMed  Google Scholar 

  81. Kireev RA, Vara E, Viña J, Tresguerres JAF. Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats. Age (Dordr). 2014;36:9707.

    Article  CAS  Google Scholar 

  82. Fiorina P, Lattuda G, Silvestrini C, Ponari O, Dall’Aglio P. Disruption of nocturnal melatonin rhythm and immunological involvement in ischaemic stroke patients. Scand J Immunol. 1999;50:228–31.

    Article  CAS  PubMed  Google Scholar 

  83. Durrant J, Michaelides EB, Rupasinghe T, Tull D, Green MP, Jones TM. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus. PeerJ. 2015;3:e1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Jones TM, Durrant J, Michaelides EB, Green MP. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness. Philos Trans R Soc Lond B Biol Sci. 2016;370:20140122.

    Article  CAS  Google Scholar 

  85. Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES. Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer. 2005;41:2023–32.

    Article  PubMed  Google Scholar 

  86. Reiter RJ, Tan DX, Korkmaz A, Erren TC, Piekarski C, Tamura H, Manchester LC. Light at night, chronodisruption, and cancer risk: a review. Crit Rev Oncog. 2007;13:303–28.

    Article  PubMed  Google Scholar 

  87. Stevens RG. Electric power use and breast cancer: a hypothesis. Am J Epidemiol. 1987;125:556–61.

    Article  CAS  PubMed  Google Scholar 

  88. Ikeno T, Weil ZM, Nelson RJ. Dim light at night disrupts the short-day response in Siberian hamsters. Gen Comp Endocrinol. 2014;197:56–64.

    Article  CAS  PubMed  Google Scholar 

  89. Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006;16:R914–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Speizer FE, Hennekens CH. Prospective study of shift work and risk of coronary heart disease in women. Circulation. 1995;92:3178–82.

    Article  CAS  PubMed  Google Scholar 

  91. Moore-Ede MC, Richardson GS. Medical implications of shift-work. Annu Rev Med. 1985 Feb;36:607–17.

    Article  CAS  PubMed  Google Scholar 

  92. Penev PD, Kolker DE, Zee PC, Turek FW. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol. 1998;275:H2334–7.

    CAS  PubMed  Google Scholar 

  93. Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Investig. 2010;120:2600–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reddy AB, Field MD, Maywood ES, Hastings MH. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci. 2002;22:7326–30.

    CAS  PubMed  Google Scholar 

  95. Mohren DC, Jansen NW, Kant IJ, Galama J, van den Brandt PA, Swaen GM. Prevalence of common infections among employees in different work schedules. J Occup Environ Med. 2002;44:1003–11.

    Article  PubMed  Google Scholar 

  96. Kobayashi F, Furui H, Akamatsu Y, Watanabe T, Horibe H. Changes in psychophysiological functions during night shift in nurses. Int Arch Occup Environ Health. 1996;69:83–90.

    Article  Google Scholar 

  97. Nagai M, Morikawa Y, Kitaoka K, Nakamura K, Sakurai M, Nishijio M, Hamazaki Y, Maruzeni S, Nakagawa H. Effects of fatigue on immune function in nurses performing shift work. J Occup Health. 2011;53:312–9.

    Article  PubMed  Google Scholar 

  98. Nakano Y, Miura T, Hara I, Aono H, Miyano N, Miyajima K, Tabuchi T, Kosaka H. The effect of shift work on cellular immune function. J Hum Ergol. 1982;11:131–7.

    Google Scholar 

  99. Nishitani N, Sakakibara H. Subjective poor sleep and white blood cell count in male Japanese workers. Ind Health. 2007;45:296–300.

    Article  CAS  PubMed  Google Scholar 

  100. Puttonen S, Viitasalo K, Härmä M. Effect of shiftwork on systemic markers of inflammation. Chronobiol Int. 2011;28:528–35.

    Article  PubMed  Google Scholar 

  101. Sookoian S, Gemma C, Fernández Gianotti T, Burgueño A, Alvarez A, González CD, Pirola CJ. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation. J Intern Med. 2007;261:285–92.

    Article  CAS  PubMed  Google Scholar 

  102. Corpertaro A, Bracci M, Gesuita R, Carle F, Amati M, Baldassari M, Mocchegiani E, Santerelli L. Influence of shift-work on selected immune variable in nurses. Ind Health. 2011;5:597–604.

    Article  Google Scholar 

  103. Sharifian A, Farahani S, Pasalar P, Gharavi M, Aminian O. Shift work as an oxidative stressor. J Circadian Rhythms. 2005;3:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Khaleghipour S, Masjedi M, Kelishadi R. Circadian type, chronic fatigue, and serum IgM in the shift workers of an industrial organization. Adv Biomed Res. 2015;23:61.

    Google Scholar 

  105. • Leproult R, Holmbäck U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63:1860–9. This paper uncoupled the role of circadian and sleep disruption in the development of metabolic syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Parsons MJ, Moffitt TE, Gregory AM, Goldman-Mellor S, Nolan PM, Poulton R, Caspi A. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int J Obes. 2015;39:842–8.

    Article  CAS  Google Scholar 

  107. Castanon-Cervantes O, Wu MJ, Ehlen C, Paul K, Gamble KL, Johnson RL, Besing RC, Menaker M, Gerwitz AT, Davidson AJ. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185:5796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, Sarkar DK. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol. 2012;188:2583–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. •• Lucassen EA, Coomans CP, van Putten M, de Kreij SR, van Genugten JH, Sutorius RP, de Rooij KE, van der Velde M, Verhoeve SL, Smit JW, Löwik CW. Environmental 24-hr cycles are essential for health. Curr Biol. 2016;26:1843–53. Large study demonstrating reduced muscle strength, bone structure, and immune function in response to constant light exposure.

    Article  CAS  PubMed  Google Scholar 

  110. Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010;5:e10995.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.

    CAS  PubMed  Google Scholar 

  112. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452:442–7.

    Article  PubMed  CAS  Google Scholar 

  113. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113:5134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Suzuki S, Toyabe S, Moroda T, Tada T, Tsukahara A, Iiai T, Minagawa M, Maruyama S, Hatakeyama K, Endoh K, Abo T. Circadian rhythm of leucocytes and lymphocyte subsets and its possible correlation with the function of the autonomic nervous system. Clin Exp Immunol. 1997;110:500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016;25:131–43.

    Article  PubMed  Google Scholar 

  116. Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1:195–204.

    PubMed  Google Scholar 

  117. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci. 2016;19:1356–66.

    Article  CAS  PubMed  Google Scholar 

  118. Ingiosi AM, Opp MR, Krueger JM. Sleep and immune function: glial contributions and consequences of aging. Curr Opin Neurobiol. 2013;23:806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McHugh JE, Lawlor BA. Perceived stress mediates the relationship between emotional loneliness and sleep quality over time in older adults. Br J Health Psychol. 2013;18:546–55.

    Article  PubMed  Google Scholar 

  120. Yu X, Zecharia A, Zhang Z, Yang Q, Yustos R, Jager P, Vyssotski AL, Maywood ES, Chesham JE, Ma Y, Brickley SG. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol. 2014;24:2838–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron. 2010;68:1023–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mahlios J, De la Herrán-Arita AK, Mignot E. The autoimmune basis of narcolepsy. Curr Opin Neurobiol. 2013;23:767–73.

    Article  CAS  PubMed  Google Scholar 

  123. Partinen M, Saarenpää-Heikkilä O, Ilveskoski I, Hublin C, Linna M, Olsén P, Nokelainen P, Alén R, Wallden T, Espo M, Rusanen H. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One. 2012;7:e33723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. •• Tesoriero C, Codita A, Zhang MD, Cherninsky A, Karlsson H, Grassi-Zucconi G, Bertini G, Harkany T, Ljungberg K, Liljeström P, Hökfelt TG. H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep–wake regulatory neurons in mice. Proc Natl Acad Sci. 2016;113:E368–77. Directly demonstrates how H1N1 virus interacts with sleep-wake circuitry in the brain.

    Article  CAS  PubMed  Google Scholar 

  125. Bryant PA, Trinder J, Curtis N. Sick and tired: does sleep have a vital role in the immune system? Nat Rev Immunol. 2004;4:457–67.

    Article  CAS  PubMed  Google Scholar 

  126. Besedovsky L, Lange T, Born J. Sleep and immune function. Eur J Phys. 2012;463:121–37.

    Article  CAS  Google Scholar 

  127. Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21:727–35.

    Article  CAS  PubMed  Google Scholar 

  128. Alam M, McGinty D, Bashir T, Kumar S, Imeri L, Opp MR, Szymusiak R. Interleukin-1β modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep regulation. Eur J Neurosci. 2004;20:207–16.

    Article  PubMed  Google Scholar 

  129. Rada P, Mark GP, Vitek MP, Mangano RM, Blume AJ, Beer B, Hoebel BG. Interluekin 1β decreases acetylcholine measured by microdialysis in the hippocampus of freely moving rats. Brain Res. 1991;550:287–90.

    Article  CAS  PubMed  Google Scholar 

  130. Luk WP, Zhang Y, White TD, Lue FA, Wu C, Jiang CG, Zhang L, Moldofsky. Adenosine: a mediator of interleukin-1β-induced hippocampal synaptic inhibition. J Neurosci. 1999;19:4238–44.

    CAS  PubMed  Google Scholar 

  131. Manfridi A, Brambilla D, Bianchi S, Mariotti M, Opp MR, Imeri L. Interleukin-1β enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur J Neurosci. 2003;18:1041–9.

    Article  PubMed  Google Scholar 

  132. Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009;10:199–210.

  133. Irwin MR, Wang M, Ribeiro D, Cho HJ, Olmstead R, Breen EC, Martinez-Maza O, Cole S. Sleep loss activates cellular inflammatory signaling. Biol Psychiatry. 2008;64:538–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005;112:2660–7.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang J, Zhu Y, Zhan G, Fenik P, Panossian L, Wang MM, Reid S, Lai D, Davis JG, Baur JA, Veasey S. Extended wakefulness: compromised metabolics in and degeneration of locus ceruleus neurons. J Neurosci. 2014;34:4418–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Irwin MR, Witarama T, Caudill M, Olmstead R, Breen EC. Sleep loss activates cellular inflammation and signal transducer and activator of transcription (STAT) family proteins in humans. Brain Behav Immun. 2015;47:86–92.

  137. Bellesi M, Bushey D, Chini M, Tononi G, Cirelli C. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice. Sci Rep. 2016;6:36804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. • Phillips DJ, Savenkova MI, Karatsoreos IN. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain Behav Immun. 2015;47:14–23. Demonstrated that chronically short day exposure (20 h) disrupts sleep and immunity.

    Article  PubMed  Google Scholar 

  139. Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, Schiller M, Green NL, Admon Y, Hakim F, Shen-Orr SS, Rolls A. Activation of the reward system boosts innate and adaptive immunity. Nat Med. 2016;22:940–4.

    Article  CAS  PubMed  Google Scholar 

  140. Marpegan L, Bekinschtein TA, Freudenthal R, Rubio MF, Ferreyra GA, Romano A, Golombek DA. Participation of transcription factors from the Rel/NF-κB family in the circadian system in hamsters. Neurosci Lett. 2004;358:9–12.

    Article  CAS  PubMed  Google Scholar 

  141. Marpegan L, Bekinschtein TA, Costas MA, Golombek DA. Circadian responses to endotoxin treatment in mice. J Neuroimmunol. 2005;160:102–9.

    Article  CAS  PubMed  Google Scholar 

  142. • Paladino N, Mul Fedele ML, Duhart JM, Marpegan L, Golombek DA. Modulation of mammalian circadian rhythms by tumor necrosis factor-α. Chronobiol Int. 2014;31:668–79. Demonstrated direct actions of TNF-α on circadian clock.

    Article  CAS  PubMed  Google Scholar 

  143. Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med. 2010;38:751–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Paladino N, Leone MJ, Plano SA, Golombek DA. Paying the circadian toll: the circadian response to LPS injection is dependent on the toll-like receptor 4. J Neuroimmunol. 2010;225:62–7.

    Article  CAS  PubMed  Google Scholar 

  145. Silver AC, Arjona A, Walker WE, Fikrig E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity. 2012;36:251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Duhart JM, Brocardo L, Fedele ML, Guglielmotti A, Golombek DA. CCL2 mediates the circadian response to low dose endotoxin. Neuropharmacology. 2016;108:373–81.

    Article  CAS  PubMed  Google Scholar 

  147. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  148. Mormont MC, Levi F. Circadian-system alterations during cancer processes: a review. Int J Cancer. 1997;70:241–7.

    Article  CAS  PubMed  Google Scholar 

  149. Cash E, Sephton SE, Chagpar AB, Spiegel D, Rebholz WN, Zimmaro LA, Tillie JM, Dhabhar FS. Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav Immun. 2015;48:102–14.

    Article  CAS  PubMed  Google Scholar 

  150. Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, Claustrat B, Hastings MH, Lévi F. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst. 2002;94:690–7.

    Article  PubMed  Google Scholar 

  151. •• Masri S, Papagiannakopoulos T, Knouchi K, Liu Y, Cervantes M, Baldi P, Jacks T, Sassone-Corsi P. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell. 2016;165:896–909. Demonstrated that tumors in the lung can disrupt the circadian clock and alter hepatic inflammatory and metabolic function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol. 2010;50:377–421.

    Article  CAS  PubMed  Google Scholar 

  153. Hrushesky WJ. Circadian timing of cancer chemotherapy. Science. 1985;228:73–5.

    Article  CAS  PubMed  Google Scholar 

  154. Sauter KAD, Wood LJ, Wong J, Iordanov M, Magun BE. Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome. Cancer Biol Ther. 2011;11:1008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Borniger JC, Walker II WH, Gaudier-Diaz MM, Stegman CJ, Zhang N, Hollyfield JL, Nelson RJ, DeVries AC. Time-of-day dictates transcriptional inflammatory responses to cytotoxic chemotherapy. Sci Rep. 2017;7:41220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. • Van Dycke KC, Nijman RM, Wackers PF, Jonker MJ, Rodenburg W, van Oostrom CT, Salvatori DC, Breit TM, van Steeg H, Luijten M, van der Horst GT. A day and night difference in the response of the hepatic transcriptome to cyclophosphamide treatment. Arch Toxicol. 2015;89:221–31. Demonstrated that time-of-day of cyclophosphamide administration can drastically alter the hepatic transcriptional response.

    Article  CAS  PubMed  Google Scholar 

  157. Gorbacheva VY, Kondratov RV, Zhang R, Cherukuri S, Gudkov AV, Takahashi JS, Antoch MP. Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci U S A. 2005;102:3407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Terazono H, Hamdan A, Matsunaga N, Hayasaka N, Kaji H, Egawa T, Makino K, Shigeyoshi Y, Koyanagi S, Ohdo S. Modulatory effects of 5-fluorouracil on the rhythmic expression of circadian clock genes: a possible mechanism of chemotherapy-induced circadian rhythm disturbances. Biochem Pharmacol. 2008;75:1616–22.

    Article  CAS  PubMed  Google Scholar 

  160. Vinogradova IA, Anisimov VN, Bukalev AV, Semenchenko AV, Zabezhinski MA. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging. 2009;1:855–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jud C, Albrecht U. Circadian rhythms in murine pups develop in absence of a functional maternal circadian clock. J Biol Rhythm. 2006;21:149–54.

    Article  CAS  Google Scholar 

  162. Mendez N, Abarzua-Catalan L, Vilches N, Galdames HA, Spichiger C, Richter HG, Valenzuela GJ, Seron-Ferre M, Torres-Farfan C. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One. 2012;7:e42713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Reppert SM. Maternal entrainment of the developing circadian system. Ann N Y Acad Sci. 1985;453:162–9.

    Article  CAS  PubMed  Google Scholar 

  164. Reppert SM, Schwartz WJ. Maternal endocrine extirpations do not abolish maternal coordination of the fetal circadian clock. Endocrinology. 1986;119:1763–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy J. Nelson.

Ethics declarations

Conflict of Interest

Jeremy C. Borniger, Yasmine M. Cisse, Surbhi, and Randy J. Nelson each declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Circadian Rhythm Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borniger, J.C., Cisse, Y.M., Surbhi et al. Reciprocal Regulation of Circadian Rhythms and Immune Function. Curr Sleep Medicine Rep 3, 93–103 (2017). https://doi.org/10.1007/s40675-017-0070-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-017-0070-7

Keywords

Navigation