Skip to main content
Log in

Antiallergic activity of Skimmia anquetilia on ovalbumin-induced allergic rhinitis, dermatitis, paw oedema and mast cell degranulation

  • original article
  • Published:
Allergo Journal International Aims and scope Submit manuscript

Summary

Background

Asthma, allergic rhinitis, acute dermatitis, allergic skin reactions, hypersensitivity reactions and other autoimmune illnesses remain difficult to treat. The purpose of this study was to prepare Skimmia anquetilia (SA) extracts and test their antiallergenic characteristics in various types of animal models. A total of nine groups of five animals each were used in this investigation. Ovalbumin (OA) was used as an allergen to sensitise the animals and bring about atopic dermatitis, allergic rhinitis, paw oedema and mast cell degranulation. Doses of 100, 200 and 400 mg/kg/day of essential oil and hydroalcoholic extracts were administered to the animals for testing.

Results

Gas chromatography–mass spectrometry (GC-MS) analysis identified active constituents including α‑pinene, α‑phellandrene, geijerene, 3‑carene, β‑ocimene and others. SA extract treatment resulted in improved overall health and reduced nasal allergy symptoms such rubbing, sneezing and redness. Essential oil from the SA plant reduced eosinophil infiltration into bronchioalveolar fluid. The platelet and mean platelet volumes returned to normal after treatment with SA essential oil and hydroalcoholic extract. When administered, SA completely counteracted the spleen-enlargement effects of ovalbumin. Inhibition of ovalbumin-induced histopathological alterations in skin, lungs and spleen was achieved with administration of SA essential oil and extract.

Conclusion

This study concludes that the essential oil of SA has better promising results compared to extract for treating atopic dermatitis, allergic rhinitis, stabilising mast cell membranes, preventing entry of eosinophils into the lungs and maintaining skin, spleen and lung architecture. The authors suggest that further work is required to be done to isolate SA’s active ingredients and assess their detailed mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

ANOVA:

Analysis of variance

AR:

Allergic rhinitis

BALF:

Bronchioalveolar lavage fluid

DMARDs:

Disease-modifying antirheumatic drugs

GC-MS:

Gas chromatography–mass spectrometry

HGB:

Haemoglobin

IgE:

Immunoglobulin E

MCV:

Mean corpuscular volume

OA:

Ovalbumin

PBS:

Phosphate-buffered saline

RBC:

Red blood corpuscles

RDW-CV:

Red cell distribution width coefficient of variation

RPMI:

Roswell Park Memorial Institute

SA:

Skimmia anquetilia

SAE:

Skimmia anquetilia extract

SAEO:

Skimmia anquetilia essential oil

SS:

Sensitization solution

References

  1. Sardar PK, Dev S, Al Bari MA, Paul S, Yeasmin MS, Das AK, et al. Antiallergic, anthelmintic and cytotoxic potentials of dried aerial parts of acanthus ilicifolius L. Clin Phytosci. 2018; https://doi.org/10.1186/s40816-018-0094-7.

    Article  Google Scholar 

  2. Badger-Emeka LI, Emeka PM, Thirugnanasambantham K, Ibrahim HIM. Anti-allergic potential of cinnamaldehyde via the inhibitory effect of histidine decarboxylase (HDC) producing Klebsiella pneumonia. Molecules. 2020; https://doi.org/10.3390/molecules25235580.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Younas KA, Shehzad O, Seo EK, Onder A, Khan S. Anti-allergic activities of umbelliferone against histamine- and picryl chloride-induced ear edema by targeting Nrf2/iNOS signaling in mice. BMC Complement Med Ther. 2021; https://doi.org/10.1186/s12906-021-03384-1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Quah Y, Lee SJ, Lee EB, Birhanu BT, Ali S, Abbas MA, et al. Cornus officinalis ethanolic extract with potential anti-allergic, anti-inflammatory, and antioxidant activities. Nutrients. 2020; https://doi.org/10.3390/nu12113317.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liao C, Han Y, Chen Z, Baigude H. The extract of black cumin, licorice, anise, and black tea alleviates OVA-induced allergic rhinitis in mouse via balancing activity of helper T cells in lung. Allergy Asthma Clin Immunol. 2021; https://doi.org/10.1186/s13223-021-00587-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shankari PK, Suresh S, Begum RF. Efficacy of intranasal fluticasone propionate and budesonide in management of allergic rhinitis—a prospective comparative study. Egypt J Otolaryngol. 2021; https://doi.org/10.1186/s43163-021-00181-y.

    Article  Google Scholar 

  7. Li P, Tsang MS, Kan LL, Hou T, Hon SS, Chan BC, et al. The immuno-modulatory activities of pentaherbs formula on ovalbumin-induced allergic rhinitis mice via the activation of th1 and Treg cells and inhibition of th2 and th17 cells. Molecules. 2021; https://doi.org/10.3390/molecules27010239.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Luo Q, Zhou S, Li X, et al. Chinese herbal medicine bi min fang for allergic rhinitis: protocol for a double-blind, double-dummy, randomized controlled trial. Trials. 2019; https://doi.org/10.1186/s13063-018-3151-0.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Suntivich R, Songjang W, Jiraviriyakul A, Ruchirawat S, Chatwichien J. LC-MS/MS metabolomics-facilitated identification of the active compounds responsible for anti-allergic activity of the ethanol extract of xenostegia tridentata. PLoS ONE. 2022; https://doi.org/10.1371/journal.pone.0265505.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kotov S, Gontova T, Kononenko N, Chernyavski E, Chikitkina V. Phytochemical analysis and anti-allergic activity of a combined herbal medicine based on bur-marigold, calendula and hawthorn. Pharmacia. 2020; https://doi.org/10.3897/pharmacia.69.e77624.

    Article  Google Scholar 

  11. Verma P, Singh B, Kaur A, Kumar V. In-vitro anti-inflammatory and anti-arthritic activities of ethyl acetate extract of Skimmia anquetilia leaves. J Med Herbs Ethnomed. 2020; https://doi.org/10.25081/jmhe.2020.v6.6221.

    Article  Google Scholar 

  12. Wani TA, Kumar N, Khan J. In-vitro cytotoxic activity of Skimmia anquetilia Taylor & Airy Shaw essential oils on various human cancer cell lines. Int J Res Pharm Chem. 2016;6(1):89–94.

    CAS  Google Scholar 

  13. Truong DH, Nguyen DH, Ta NT, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual. 2019; https://doi.org/10.1155/2019/8178294.

    Article  Google Scholar 

  14. Mugao LG, Gichimu BM, Muturi PW, Mukono ST. Characterization of the volatile components of essential oils of selected plants in Kenya. Biochem Res Int. 2020; https://doi.org/10.1155/2020/8861798.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2021; https://doi.org/10.1111/bcpt.13492.

    Article  PubMed  Google Scholar 

  16. Gwak NG, Kim EY, Lee B, Kim JH, Im YS, Lee KY, et al. Xanthii fructus inhibits allergic response in the ovalbumin-sensitized mouse allergic rhinitis model. Pharmacogn Mag. 2015; https://doi.org/10.4103/0973-1296.166058.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Piao CH, Fan YJ, Nguyen TV, Song CH, Chai OH. Mangiferin alleviates ovalbumin-induced allergic rhinitis via Nrf2/HO-1/NF-κB signaling pathways. Int J Mol Sci. 2020; https://doi.org/10.3390/ijms21103415.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alqahtani T, Parveen S, Alghazwani Y, Alharbi HM, Gahtani RM, et al. Pharmacological validation for the folklore use of ipomoea nil against asthma: in vivo and in vitro evaluation. Molecules. 2022; https://doi.org/10.3390/molecules27144653.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aswar U, Shintre S, Chepurwar S, Aswar M. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharm Biol. 2015; https://doi.org/10.3109/13880209.2014.982299.

    Article  PubMed  Google Scholar 

  20. Chitme HR, Malipatil M, Chandrashekhar VM, Prashant PM. Antiallergic activity of aristolochia bracteolata lank in animal model. Indian J Exp Biol. 2010;48(1):46–52.

    CAS  PubMed  Google Scholar 

  21. Kim YK, Lee J, Kim HY, Kim SH, Hwang JH, Suh HN. Key factors to establish the ovalbumin-induced atopic dermatitis minipig model: age and body weight. Lab Anim Res. 2022; https://doi.org/10.1186/s42826-022-00141-4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Batista NV, Pereira RV, Noviello ML, Dourado LP, Perez DA, Foureaux G, et al. Prolonged ingestion of ovalbumin diet by sensitized mice improves the metabolic consequences induced by experimental food allergy. Clin Exp Immunol. 2014; https://doi.org/10.1111/cei.12435.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gondim FL, Serra DS, Cavalcante FSÁ. Effects of eucalyptol in respiratory system mechanics on acute lung injury after exposure to short-term cigarette smoke. Respir Physiol Neurobiol. 2019; https://doi.org/10.1016/j.resp.2019.04.007.

    Article  PubMed  Google Scholar 

  24. Bastos VP, Gomes AS, Lima FJ, Brito TS, Soares PM, Pinho JP, et al. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged Guinea pigs. Basic Clin Pharmacol Toxicol. 2011; https://doi.org/10.1111/j.1742-7843.2010.00622.x.

    Article  PubMed  Google Scholar 

  25. Borriello F, Iannone R, Marone G. Histamine release from mast cells and basophils. Handb Exp Pharmacol. 2017; https://doi.org/10.1007/164_2017_18.

    Article  PubMed  Google Scholar 

  26. Pathan AR, Vadnere G, Sabu M. Curcuma caesia rhizomes: evaluation of antiasthmatic effect by using clonidine induced mast cell degranulation. Neuropharm J. 2016; https://doi.org/10.37881/1.112.

    Article  Google Scholar 

  27. Kumar D, Bhujbal SS, Deoda RS, Mudgade SC. Bronchodilator activity of aqueous extract of stem bark of ailanthus excelsa roxb. Pharmacognosy Res. 2010; https://doi.org/10.4103/0974-8490.62955.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ribeiro-Filho J, Piuvezam MR, Bozza PT. Anti-allergic properties of curine, a bisbenzylisoquinoline alkaloid. Molecules. 2015; https://doi.org/10.3390/molecules20034695.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Toda T, Yoshino S. Enhancement of ovalbumin-specific Th1, Th2, and Th17 immune responses by amorphous silica nanoparticles. Int J Immunopathol Pharmacol. 2016; https://doi.org/10.1177/0394632016656192.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Subhashini, Chauhan PS, Singh R. Ovalbumin-induced allergic inflammation lead to structural alterations in mouse model and protective effects of intranasal curcumin: a comparative study. Allergol Immunopathol (Madr). 2016; https://doi.org/10.1016/j.aller.2016.01.001.

    Article  PubMed  Google Scholar 

  31. Kim YK, Lee JY, Hwang JH, Suh HN. A pilot study to establish an ovalbumin-induced atopic dermatitis minipig model. J Vet Res. 2021; https://doi.org/10.2478/jvetres-2021-0045.

  32. Jun YS, Kang P, Min SS, Lee JM, Kim HK, Seol GH. Effect of eucalyptus oil inhalation on pain and inflammatory responses after total knee replacement: a randomized clinical trial. Evid Based Complement Alternat Med. 2013; https://doi.org/10.1155/2013/502727.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang Y, Huang L, Tian C, Qian B. Magnesium isoglycyrrhizinate alleviate airway inflammatory responses in ovalbumin-induced mouse model of allergic asthma. Immunopharmacol Immunotoxicol. 2022; https://doi.org/10.1080/08923973.2022.2055567.

    Article  PubMed  Google Scholar 

  34. Herath KHINM, Kim HJ, Mihindukulasooriya SP, Kim A, Kim HJ, Jeon YJ, et al. Sargassum horneri extract containing mojabanchromanol attenuates the particulate matter exacerbated allergic asthma through reduction of Th2 and Th17 response in mice. Environ Pollut. 2020; https://doi.org/10.1016/j.envpol.2020.114094.

    Article  PubMed  Google Scholar 

  35. Tsepkolenko A, Tsepkolenko V, Dash S, Mishra A, Bader A, Melerzanov A, et al. The regenerative potential of skin and the immune system. Clin Cosmet Investig Dermatol. 2019; https://doi.org/10.2147/CCID.S196364.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ribatti D, Tamma R, Annese T, Crivellato E. The role of mast cells in human skin cancers. Clin Exp Med. 2021; https://doi.org/10.1007/s10238-021-00688-x.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim SH, Hong JH, Lee YC. Oleanolic acid suppresses ovalbumin-induced airway inflammation and Th2-mediated allergic asthma by modulating the transcription factors T‑bet, GATA‑3, RORγt and Foxp3 in asthmatic mice. Int Immunopharmacol. 2014; https://doi.org/10.1016/j.intimp.2013.12.009.

    Article  PubMed  Google Scholar 

  38. Hui HKS, Li TS, Lo WLW, Kan AKC, Ho SY, Yeung WYW, et al. Sensitisation profile of Chinese allergic rhinitis patients and effectiveness of a joint allergy-ENT clinic. Allergo J Int. 2023; https://doi.org/10.1007/s40629-022-00218-5.

    Article  PubMed  Google Scholar 

  39. Pitchford SC, Riffo-Vasquez Y, Sousa A, Momi S, Gresele P, Spina D, et al. Platelets are necessary for airway wall remodeling in a murine model of chronic allergic inflammation. Blood. 2004; https://doi.org/10.1182/blood-2003-05-1707.

    Article  PubMed  Google Scholar 

  40. Kim JH, Mun YJ, Im SJ, Han JH, Lee HS, Woo WH. Effects of the aqueous extract of epimedii herba on the antibody responses in mice. Int Immunopharmacol. 2001; https://doi.org/10.1016/s1567-5769(01)00030-3.

    Article  PubMed  Google Scholar 

  41. Wang MC, Huang WC, Chen LC, Yeh KW, Lin CF, Liou CJ. Sophoraflavanone G from sophora flavescens ameliorates allergic airway inflammation by suppressing th2 response and oxidative stress in a murine asthma model. Int J Mol Sci. 2022; https://doi.org/10.3390/ijms23116104.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to conduct of the experiment and preparation of the manuscript. All authors participated in the design, interpretation of the studies, analysis of the data and review of the manuscript.

Corresponding author

Correspondence to Havagiray R. Chitme.

Ethics declarations

Conflict of interest

N. Kukreti, H.R. Chitme and V.K. Varshney declare that they have no competing interests.

Ethical standards

The institutional animal ethics committee granted permission for this animal experiment (DITU/IAEC/21-22/07-07, dated 10 July 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukreti, N., Chitme, H.R. & Varshney, V.K. Antiallergic activity of Skimmia anquetilia on ovalbumin-induced allergic rhinitis, dermatitis, paw oedema and mast cell degranulation. Allergo J Int 33, 80–93 (2024). https://doi.org/10.1007/s40629-023-00247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40629-023-00247-8

Keywords

Navigation