Skip to main content

Advertisement

Log in

Climate change and the potential spread of Sorghum halepense in the central area of Argentina based on growth, biomass allocation and eco-physiological traits

  • Review
  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Despite the research dedicated to understand the potential climate change impacts on cropping systems, little attention has been given to potential effects on the geographic range of agricultural weeds. This paper reviews some biological and eco-physiological features of Sorghum halepense populations and their current and potential spread in a central eco-region of Argentina. Above ground biomass accumulation of the weed shows very high accumulation rates, which in the case of rhizomes is boosted as the available resources in propagule increases. An increase in temperature by 15 % may increase the relative growth rate (RGR) by 50 % in a 20–90 days growth period. Not only biomass output but also biomass allocation is directly related to adaptation in changing environments. Populations adapted to limited water conditions are able to maintain a higher RGR under water restriction as compared to those adapted to more humid conditions. Regarding the temperature, climate models are coincident: a range of increase from 0.9 °C in the south to 1.4 °C in the north of Argentina is predicted for 2020–2040, as compared to the period 1961–1990. Concerning the rainfall, not yet a prediction but a real fact is the displacement of isohyets from east to south. The average frequency of the weed in the pool of fields recently surveyed in the central region was 37 %, which increased to 42 % in the field borders. We consider that this frequency is high, since all crop fields are managed with high technology level and herbicides have been applied not only during the crop cycles, but also in previous fallows. The high RGR and other physiological features of weed populations at low water availability, which is more frequent in the west of the surveyed region where the frontier of extensive crops have recently displaced, may explain higher frequencies found. Well-adapted S. halepense populations invading rainfed crops in this eco-region will likely to take advantage under the forthcoming forecasted climatic conditions. Since temperatures increase from east to west as shown in climograms, S. halepense populations will likely perform even better under the new climate conditions. Coupling the actual management to physiological traits, it is envisaged an increase of the weed frequency in the surveyed eco-regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acciaresi HA (2008) Respuestas morfologicas y fisiologicas en dos hibridos de Zea mays y poblaciones de Sorghum halepense inducidas por la competencia frente a la variacion de agua edafica. La Plata, Universidad Nacional de La Plata. Tesis Doctoral, pp 205

  • Acciaresi HA, Asenjo CA (2003) Efecto alelopático de S. halepense (L.) Pers. sobre el crecimiento de plántula y la biomasa aérea y radical de Triticum aestivum (L.). Ecología Austral 13:49–61

    Google Scholar 

  • Acciaresi HA, Guiamet JJ (2010) Below-and above-ground growth and biomass allocation in maize and S. halepense in response to soil water competition. Weed Res 50:481–492

    Article  Google Scholar 

  • Acciaresi H, Yanniccari M, Leguizamón E, Guiamet J (2012) Leaf gas exchange and competitive ability of Zea mays and S. halepense as affected by water competition. Acta Agron Hung 60:231–246

    Article  Google Scholar 

  • Allen JA (1990) Establishment of bottomland oak plantations on the Yazoo National Wildlife Refuge Complex. South J Appl For 14:206–210

    Google Scholar 

  • Leguizamón ES, Berbery MT, Cortese P, García Sampedro C, Heit G, Ochoa MC, Sobrero MT, Arregui C, Sánchez D, Scotta R, Lutz A, Amuchástegui, A, Gigón R, Marchessi JE, Núñez C, Zorza E, Rivarola R, Scapini E, Fernández M, Suárez CE, Troiani H (2011) Vigilancia Fitosanitaria en Argentina: detección precoz de malezas cuarentenarias. In: XXXII Reunión Argentina de Botánica. Posadas, Argentina, pp 42

  • Anderson LE, Appleby AP, Weseloh JW (1960) Characteristics of Johnson grass rhizomes. Weeds 8:402–406

    Article  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetic of colonizing species. Academic Press, New York, pp 147–168

    Google Scholar 

  • Benjamin LR, Park SE (2007) The conductance model of plant growth and competition in monoculture and species mixtures: a review. Weed Res 47:284–298

    Article  Google Scholar 

  • Clements DR, Di Tommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240

    Article  Google Scholar 

  • Clements DR, Di Tommaso A (2012) Predicting weed invasion in Canada under climatic change. Evaluating evolutionary potential. Can J Plant Sci 92:1013–1020

    Article  Google Scholar 

  • Clements DR, Di Tommaso A, Jordan N, Booth B, Murphy SD, Cardina J, Doohan D, Mohler C, Swanton CJ (2004) Adaptability of plants invading North American cropland. Agric Ecosyst Environ 104:379–398

    Article  Google Scholar 

  • Convención Marco de las Naciones Unidas sobre el Cambio Climático (2007) 2ª Comunicación Nacional de la República Argentina, pp 199

  • Cousens R, Mortimer AM (1995) Dynamics of weed populations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Follak S, Essl F (2012) Spread dynamics and agricultural impact of Sorghum halepense, an emerging invasive species in central Europe. Weed Res 53:53–60

    Article  Google Scholar 

  • Geddes RD, Scott HD, Oliver LR (1979) Growth and water use by common cocklebur (Xanthium pensylvanicum) and soybean (Glycine max) under field conditions. Weed Sci 27:206–212

    Google Scholar 

  • Ghersa CM, Satorre EH, van Esso ML (1985) Seasonal patterns of Johnsongrass seed production in different agricultural systems. Isr J Bot 34:24–31

    Google Scholar 

  • Ghersa CM, Martinez-Ghersa MA, Satorre EH, van Esso ML, Chichotky G (1993) Seed dispersal, distribution and recruitment of seedlings of S. halepense (L.) Pers. Weed Res 33:79–88

    Article  Google Scholar 

  • Golden Software Inc. (2000) Surfer 3.2 User’s guide. Golden Software Inc., Golden, CO

  • Gressel J, Segel LA (1978) The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J Theor Biol 75:349–371

    Article  CAS  PubMed  Google Scholar 

  • Hartzler RG, Gover A, Stellingwerf J (1991) Factors affecting winter survival of Johnson grass (Sorghum halepense) rhizomes. Weed Technol 5:108–110

    Google Scholar 

  • Heap I (2013) The international survey of herbicide resistant weeds (online). http://www.weedscience.org/In.asp. Accessed 6 Nov 2013

  • Horowitz M (1973) Spatial growth of Sorghum halepense. Weed Res 13:200–208

    Article  Google Scholar 

  • Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    Article  CAS  PubMed  Google Scholar 

  • Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical growth analysis. Ann Bot 90:485–488

    Article  CAS  PubMed  Google Scholar 

  • Keeley PE, Tullen RJ (1979) Influence of planting date on the growth of Johnsongrass (Sorghum halepense) from seed. Weed Sci 27:554–558

    Google Scholar 

  • Kriticos DJ, Yonow T, Mc Fadyen RE (2007) The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Res 45:246–254

    Article  Google Scholar 

  • Lambers H, Chapin III F, Pons T (1998) Growth and allocation. In: Lambers HF, Chapin III F, Pons T (eds) Plant physiological ecology. Springer, New York, pp 299–351

  • Lass LW, Prather TS, Glenn NF, Weber KT, Mundt JT, Pettingill J (2005) A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babybreath (Gysophila paniculata) with a hyperspectral sensor. Weed Sci 53:242–251

    Article  CAS  Google Scholar 

  • Leguizamon ES (1986) Seed survival and patterns of seedling emergence in S. halepense (L.) Pers. Weed Res 26:397–403

  • Leguizamón ES (1983) Dinámica poblacional de sorgo de Alepo (Sorghum halepense L. Pers.) en soja. Enfoque del estudio. INTA Informe Técnico No. 32:13

  • Leguizamón ES (1997) Refinamiento del modelo poblacional de sorgo de Alepo (Sorghum halepense. L. Pers.). Efecto de la longitud de los rizomas. Optimización del impacto herbicida. In: VI Congreso Sociedad de la Sociedad Española de Malherbología. Valencia, Spain, pp 96–102

  • Leguizamón ES (1999) The refinement of the population model of S. halepense (L.) Pers. under a soybean crop. In: Proceedings of the 1999 British crop protection conference-weeds, Brighton, UK, pp 364–372

  • Leguizamón ES (2003) Biología Poblacional de sorgo de Alepo: Complementariedad de estrategias y efectos del sistema en la dinámica de la maleza. Rosario, Universidad Nacional de Rosario. Tesis Doctoral, pp 135

  • Leguizamón ES (2008) Crecimiento de Sorghum halepense. L. Pers. Efectos del tipo y tamaño de propáguo. Ajuste de un modelo de conductancia. In: XXXI Congreso de la Sociedad Argentina de Fisiología Vegetal (SAFV). Rosario, Argentina, pp 18

  • Leguizamón ES, Brovelli E, Allieri L, Giuggia AE (1986) Dinámica poblacional de sorgo de Alepo (Sorghum halepense. L. Pers.) en la secuencia trigo/soja. IDIA-INTA 437–440:44–48

    Google Scholar 

  • Leguizamón E, Yanniccari M, Guiamet J, Acciaresi H (2011) Growth, gas exchange and competitive ability of S. halepense populations under different soil water availability. Can J Plant Sci 91:1011–1025

    Article  Google Scholar 

  • Lolas PC, Coble HD (1980a) Johnsongrass (Sorghum halepense) growth characteristics as related to rhizome length. Weed Res 20:205–210

    Article  Google Scholar 

  • Lolas PC, Coble HD (1980b) Morphology and development of Johnsongrass plants from seeds and rhizomes. Weeds 9:58–562

    Google Scholar 

  • Mc Donald A, Riha S, Di Tommaso A, De Gaetano A (2009) Climate change and geography of weed damage: analysis of US maize systems suggests the potential for significant range transformation. Agric Ecosyst Environ 130:131–140

    Article  Google Scholar 

  • McWhorter CG (1989) History, biology and control of Johnsongrass. Reviews of Weed Science 4:21–85

    Google Scholar 

  • Oyer BE, Gries GA, Rogers BJ (1959) The seasonal development of Johnsongrass plants. Weeds 7:13–19

    Article  Google Scholar 

  • Patterson DT (1995) Effects of environmental stress on weed/crop interactions. Weed Sci 43:483–490

    CAS  Google Scholar 

  • Patterson DT, Flint EP (1983) Comparative water relations, photosynthesis and growth of Soybean (Glycine max) and seven associated weeds. Weed Sci 31:318–323

    Google Scholar 

  • Pattison RR, Mack RN (2008) Potential distribution of invasive tree Triadica sebifera (Euphorbiaceae) in the United States: evaluating CLIMEX predictions with field trials. Glob Change Biol 14:813–826

    Article  Google Scholar 

  • Ray JD, Sinclair TR (1997) Stomatal closure of maize hybrids in response to drying soil. Crop Sci 37:803–807

    Article  Google Scholar 

  • Ray JD, Samson BK, Sinclair TR (1997) Vegetative growth and soil water extraction of two maize hybrids during water deficits. Field Crops Research 52:135–142

    Article  Google Scholar 

  • Rem-Aapresid (2012). http://www.aapresid.org.ar/rem/cuales-son-y-donde-estan-las-malezas-resistentes/

  • Satorre EH, Ghersa CM, Pataro AM (1985) Prediction of S. halepense (L.). Pers. rhizome sprout emergence in relation to air temperature. Weed Res 25:103–109

    Article  Google Scholar 

  • ScaifeA CoxEF, Morris GEL (1987) The relationship between shoot weight, plant density and time during the propagation of tour vegetable species. Ann Bot 59:325–334

    Google Scholar 

  • Scopel AL, Ballaré CL, Ghersa CM (1988) Role of seed reproduction in the population ecology of S. halepense in Maize crops. J Appl Ecol 25:951–962

    Article  Google Scholar 

  • Scott HD, Geddes RD (1979) Plant water stress of soybean (Glycine max) and common cocklebur (Xanthium pensylvanicum): a comparison under field conditions. Weed Sci 27:285–289

    Google Scholar 

  • Stuart BL, Krieg DR, Abernathy JR (1985) Photosyntesis and stomatal conductance responses of Johnsongrass (Sorghum halepense) to water stress. Weed Sci 33:635–639

    Google Scholar 

  • Vila-Aiub MM, Balbi MC, Gundel PE, Ghersa CM, Powles SB (2007) Evolution of glyphosate-resistant Johnsongrass (Sorghum halepense) in glyphosate-resistant soybean. Weed Sci 55:566–571

    Article  CAS  Google Scholar 

  • Vitta JI, Leguizamón ES (1991) Dynamics and control of S. halepense (L.) Pers. shoot populations: a test of a thermal calendar model. Weed Res 31:73–79

    Article  Google Scholar 

  • Warwick SI, Black ID (1983) The biology of Canadian weeds.61: S. halepense (L.) Pers. Can J Plant Sci 63:997–1014

    Article  Google Scholar 

  • Warwick SI, Thompson BK, Black LD (1984) Population variation in Sorghum halepense Johnsongrass at the northern limits of its range. Can J Bot 62:1781–1790

    Article  Google Scholar 

  • Yang YW, Newton RJ, Miller FR (1990) Salinity tolerance in Sorghum. II. Cell culture response to sodium chloride in S. bicolor and S. halepense. Crop Sci 30:781–785

    Article  CAS  Google Scholar 

  • Young KE, Schrader TS (2007) Chapter 13: spatial distribution and risk assessment of Johnson grass (Sorghum halepense) in Big Bend National Park. In: KE Young, TS Schader, KG Boykin, C Caldwell, GW Roemer (eds) Early detection of invasive plants in Big Bend National Park: remote sensing and GIS strategies. USGS status and trends of biological resources program. Final report, pp 154

  • Ziska LH (2003) Evaluation of yield loss in field sorghum from a C3 and C4 weed with increasing CO2. Weed Sci 51:914–918

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Sixto Leguizamón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leguizamón, E.S., Acciaresi, H.A. Climate change and the potential spread of Sorghum halepense in the central area of Argentina based on growth, biomass allocation and eco-physiological traits. Theor. Exp. Plant Physiol. 26, 101–113 (2014). https://doi.org/10.1007/s40626-014-0005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-014-0005-3

Keywords

Navigation