Skip to main content

Advertisement

Log in

Hypoxia-inducible factor signaling in vascular calcification in chronic kidney disease patients

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) affects approximately 15% of the adult population in high-income countries and is associated with significant comorbidities, including increased vascular calcifications which is associated with a higher risk for cardiovascular events. Even though the underlying pathophysiology is unclear, hypoxia-inducible factor (HIF) signaling appears to play a central role in inflammation, angiogenesis, fibrosis, cellular proliferation, apoptosis and vascular calcifications which is influenced by multiple variables such as iron deficiency anemia, serum phosphorus and calcium levels, fibroblast growth factor-23 (FGF-23) and Klotho. Along with the growing understanding of the pathology, potential therapeutic alternatives have emerged including HIF stabilizers and SGLT-2 inhibitors. The aim of this review is to discuss the role of HIF signaling in the pathophysiology of vascular calcification in CKD patients and to identify potential therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee W-C, Lee Y-T, Li L-C, Ng H-Y, Kuo W-H, Lin P-T et al (2018) The number of comorbidities predicts renal outcomes in patients with stage 3–5 chronic kidney disease. J Clin Med 7(12):493

    PubMed  PubMed Central  Google Scholar 

  2. Charles C, Ferris AH (2020) Chronic kidney disease. Prim Care 47(4):585–595

    PubMed  Google Scholar 

  3. Reiss AB, Miyawaki N, Moon J, Kasselman LJ, Voloshyna I, D’Avino R Jr et al (2018) CKD, arterial calcification, atherosclerosis and bone health: inter-relationships and controversies. Atherosclerosis 278:49–59

    CAS  PubMed  Google Scholar 

  4. Sag AA, Covic A, London G, Vervloet M, Goldsmith D, Gorriz JL et al (2016) Clinical imaging of vascular disease in chronic kidney disease. Int Urol Nephrol 48(6):827–837

    PubMed  Google Scholar 

  5. Liabeuf S, Desjardins L, Diouf M, Temmar M, Renard C, Choukroun G et al (2015) The addition of vascular calcification scores to traditional risk factors improves cardiovascular risk assessment in patients with chronic kidney disease. PLoS One 10(7):e0131707

    PubMed  PubMed Central  Google Scholar 

  6. Kendrick J, Chonchol M (2011) The role of phosphorus in the development and progression of vascular calcification. Am J Kidney Dis 58(5):826–834

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tentori F, Blayney MJ, Albert JM, Gillespie BW, Kerr PG, Bommer J et al (2008) Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 52(3):519–530

    CAS  PubMed  Google Scholar 

  8. Kanbay M, Goldsmith D, Uyar ME, Turgut F, Covic A (2010) Magnesium in chronic kidney disease: challenges and opportunities. Blood Purif 29(3):280–292

    CAS  PubMed  Google Scholar 

  9. Kanbay M, Goldsmith D, Akcay A, Covic A (2009) Phosphate—the silent stealthy cardiorenal culprit in all stages of chronic kidney disease: a systematic review. Blood Purif 27(2):220–230

    CAS  PubMed  Google Scholar 

  10. Zununi Vahed S, Mostafavi S, Hosseiniyan Khatibi SM, Shoja MM, Ardalan M (2020) Vascular calcification: an important understanding in nephrology. Vasc Health Risk Manag 16:167–180

    PubMed  PubMed Central  Google Scholar 

  11. Wang Z, Tang L, Zhu Q, Yi F, Zhang F, Li PL et al (2011) Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int 79(3):300–310

    CAS  PubMed  Google Scholar 

  12. Luo R, Zhang W, Zhao C, Zhang Y, Wu H, Jin J et al (2015) Elevated endothelial hypoxia-inducible factor-1α contributes to glomerular injury and promotes hypertensive chronic kidney disease. Hypertension 66(1):75–84

    CAS  PubMed  Google Scholar 

  13. Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K et al (2008) Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 295(4):F1023–F1029

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kushida N, Nomura S, Mimura I, Fujita T, Yamamoto S, Nangaku M et al (2016) Hypoxia-inducible factor-1α activates the transforming growth factor-β/SMAD3 pathway in kidney tubular epithelial cells. Am J Nephrol 44(4):276–285

    CAS  PubMed  Google Scholar 

  15. Gunaratnam L, Bonventre JV (2009) HIF in kidney disease and development. J Am Soc Nephrol 20(9):1877–1887

    CAS  PubMed  Google Scholar 

  16. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12(2):149–162

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP et al (2004) Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495

    CAS  PubMed  Google Scholar 

  18. Yee Koh M, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33(11):526–534

    PubMed  Google Scholar 

  19. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3α. Gene Expr 7(3):205–213

    CAS  PubMed  Google Scholar 

  20. Iyer NV, Leung SW, Semenza GL (1998) The human hypoxia-inducible factor 1α gene: HIF1A structure and evolutionary conservation. Genomics 52(2):159–165

    CAS  PubMed  Google Scholar 

  21. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94(9):4273–4278

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Malkov MI, Lee CT, Taylor CT (2021) Regulation of the Hypoxia-Inducible Factor (HIF) by pro-inflammatory cytokines. Cells 10(9):2340

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128

    CAS  PubMed  Google Scholar 

  24. Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr (2008) Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111(6):3236–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Colgan SP, Taylor CT (2010) Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7(5):281–287

    PubMed  PubMed Central  Google Scholar 

  26. Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW et al (2002) Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417(6892):975–978

    CAS  PubMed  Google Scholar 

  27. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW et al (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277(29):26351–26355

    CAS  PubMed  Google Scholar 

  28. Koh MY, Lemos R Jr, Liu X, Powis G (2011) The hypoxia-associated factor switches cells from HIF-1α- to HIF-2α-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71(11):4015–4027

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37(9):364–372

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1α (HIF-1alpha) and HIF-2α in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Takeda N, Maemura K, Imai Y, Harada T, Kawanami D, Nojiri T et al (2004) Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res 95(2):146–153

    CAS  PubMed  Google Scholar 

  32. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37(14):4587–4602

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dengler VL, Galbraith M, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49(1):1–15

    CAS  PubMed  Google Scholar 

  35. Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T et al (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 35(23):1515–1525

    PubMed  PubMed Central  Google Scholar 

  36. Booth AL, Li CQ, Al-Dossari GA, Stevenson HL (2017) Abundant dystrophic calcifications mimicking aortic valve abscess in a patient undergoing elective aortic valve replacement. BMJ Case Rep 2017

  37. Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H (1995) Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15(11):2003–2009

    CAS  PubMed  Google Scholar 

  38. Lee D (2011) Vascular calcification: inducers and inhibitors. Mater Sci Eng B 176(15):1133–1141

    CAS  Google Scholar 

  39. Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE et al (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci USA 109(35):14170–14175

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bertazzo S, Gentleman E, Cloyd KL, Chester AH, Yacoub MH, Stevens MM (2013) Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat Mater 12(6):576–583

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Balogh E, Tóth A, Méhes G, Trencsényi G, Paragh G, Jeney V (2019) Hypoxia triggers osteochondrogenic differentiation of vascular smooth muscle cells in an HIF-1 (hypoxia-inducible factor 1)-dependent and reactive oxygen species-dependent manner. Arterioscler Thromb Vasc Biol 39(6):1088–1099

    CAS  PubMed  Google Scholar 

  42. Wagegg M, Gaber T, Lohanatha FL, Hahne M, Strehl C, Fangradt M et al (2012) Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS ONE 7(9):e46483

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Park J, Park B, Kim H, Park T, Baek H (2002) Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells. Mol Cell Endocrinol 192(1–2):197–203

    CAS  PubMed  Google Scholar 

  44. Salim A, Nacamuli RP, Morgan EF, Giaccia AJ, Longaker MT (2004) Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem 279(38):40007–40016

    CAS  PubMed  Google Scholar 

  45. Mokas S, Larivière R, Lamalice L, Gobeil S, Cornfield DN, Agharazii M et al (2016) Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification. Kidney Int 90(3):598–609

    CAS  PubMed  Google Scholar 

  46. Ruffenach G, Chabot S, Tanguay VF, Courboulin A, Boucherat O, Potus F et al (2016) Role for runt-related transcription factor 2 in proliferative and calcified vascular lesions in pulmonary arterial hypertension. Am J Respir Crit Care Med 194(10):1273–1285

    PubMed  Google Scholar 

  47. Zhu Y, Ma WQ, Han XQ, Wang Y, Wang X, Liu NF (2018) Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism. Sci Rep 8(1):13730

    PubMed  PubMed Central  Google Scholar 

  48. Ma WQ, Han XQ, Wang Y, Wang X, Zhu Y, Liu NF (2017) Nε-carboxymethyl-lysine promotes calcium deposition in VSMCs via intracellular oxidative stress-induced PDK4 activation and alters glucose metabolism. Oncotarget 8(68):112841–112854

    PubMed  PubMed Central  Google Scholar 

  49. Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ et al (2015) Pyruvate dehydrogenase kinase 4 promotes vascular calcification via SMAD1/5/8 phosphorylation. Sci Rep 5:16577

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lambert CM, Roy M, Robitaille GA, Richard DE, Bonnet S (2010) HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism. Cardiovasc Res 88(1):196–204

    CAS  PubMed  Google Scholar 

  51. Li G, Lu W, Ai R, Yang J, Chen F, Tang Z (2014) The relationship between serum hypoxia-inducible factor 1α and coronary artery calcification in asymptomatic type 2 diabetic patients. Cardiovasc Diabetol 13(1):52

    PubMed  PubMed Central  Google Scholar 

  52. Hartmann G, Tschöp M, Fischer R, Bidlingmaier C, Riepl R, Tschöp K et al (2000) High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 12(3):246–252

    CAS  PubMed  Google Scholar 

  53. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59(16):3915–3918

    CAS  PubMed  Google Scholar 

  54. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L (2003) IL-1beta-mediated up-regulation of HIF-1α via an NFκB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17(14):2115–2117

    CAS  PubMed  Google Scholar 

  55. Albina JE, Mastrofrancesco B, Vessella JA, Louis CA, Henry WL Jr, Reichner JS (2001) HIF-1 expression in healing wounds: HIF-1alpha induction in primary inflammatory cells by TNF-α. Am J Physiol Cell Physiol 281(6):C1971–C1977

    CAS  PubMed  Google Scholar 

  56. Vink A, Schoneveld AH, Lamers D, Houben AJ, van der Groep P, van Diest PJ et al (2007) HIF-1α expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis 195(2):e69-75

    CAS  PubMed  Google Scholar 

  57. Bitto A, De Caridi G, Polito F, Calò M, Irrera N, Altavilla D et al (2010) Evidence for markers of hypoxia and apoptosis in explanted human carotid atherosclerotic plaques. J Vasc Surg 52(4):1015–1021

    PubMed  Google Scholar 

  58. Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218(1):7–29

    PubMed  Google Scholar 

  59. Gao L, Chen Q, Zhou X, Fan L (2012) The role of hypoxia-inducible factor 1 in atherosclerosis. J Clin Pathol 65(10):872–876

    CAS  PubMed  Google Scholar 

  60. Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH (2013) Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg 58(1):219–230

    PubMed  Google Scholar 

  61. Aarup A, Pedersen TX, Junker N, Christoffersen C, Bartels ED, Madsen M et al (2016) Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis. Arterioscler Thromb Vasc Biol 36(9):1782–1790

    CAS  PubMed  Google Scholar 

  62. Akhtar S, Hartmann P, Karshovska E, Rinderknecht FA, Subramanian P, Gremse F et al (2015) Endothelial hypoxia-inducible factor-1α promotes atherosclerosis and monocyte recruitment by upregulating microRNA-19a. Hypertension 66(6):1220–1226

    CAS  PubMed  Google Scholar 

  63. Kanbay M, Vervloet M, Cozzolino M, Siriopol D, Covic A, Goldsmith D et al (2017) Novel faces of fibroblast growth factor 23 (FGF23): iron deficiency, inflammation, insulin resistance, left ventricular hypertrophy, proteinuria and acute kidney injury. Calcif Tissue Int 100(3):217–228

    CAS  PubMed  Google Scholar 

  64. Myllyharju J (2013) Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiol (Oxf) 208(2):148–165

    CAS  PubMed  Google Scholar 

  65. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA et al (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 93(23):12969–12973

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ (2009) Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab 9(2):152–164

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR et al (2012) An oxygen-regulated switch in the protein synthesis machinery. Nature 486(7401):126–129

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang GL, Semenza GL (1996) Molecular basis of hypoxia-induced erythropoietin expression. Curr Opin Hematol 3(2):156–162

    CAS  PubMed  Google Scholar 

  69. Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82(12):3610–3615

    CAS  PubMed  Google Scholar 

  70. Kapitsinou PP, Liu Q, Unger TL, Rha J, Davidoff O, Keith B et al (2010) Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116(16):3039–3048

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Frazer DM, Wilkins SJ, Becker EM, Vulpe CD, McKie AT, Trinder D et al (2002) Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 123(3):835–844

    CAS  PubMed  Google Scholar 

  72. Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC (2002) Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100(10):3776–3781

    CAS  PubMed  Google Scholar 

  73. Afsar RE, Kanbay M, Ibis A, Afsar B (2021) In-depth review: is hepcidin a marker for the heart and the kidney? Mol Cell Biochem 476(9):3365–3381

    CAS  PubMed  Google Scholar 

  74. Yilmaz MI, Solak Y, Covic A, Goldsmith D, Kanbay M (2011) Renal anemia of inflammation: the name is self-explanatory. Blood Purif 32(3):220–225

    PubMed  Google Scholar 

  75. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH et al (2007) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Investig 117(7):1926–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Solak Y, Cetiner M, Siriopol D, Tarim K, Afsar B, Covic A et al (2016) Novel masters of erythropoiesis: hypoxia inducible factors and recent advances in anemia of renal disease. Blood Purif 42(2):160–167

    CAS  PubMed  Google Scholar 

  77. Lu X, Hu MC (2017) Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease. Kidney Dis (Basel) 3(1):15–23

    PubMed  Google Scholar 

  78. Ho BB, Bergwitz C (2021) FGF23 signalling and physiology. J Mol Endocrinol 66(2):R23-r32

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsuchiya K, Nagano N, Nitta K (2015) Klotho/FGF23 axis in CKD. Contrib Nephrol 185:56–65

    PubMed  Google Scholar 

  80. Wheeler JA, Clinkenbeard EL (2019) Regulation of fibroblast growth factor 23 by iron, EPO, and HIF. Curr Mol Biol Reports 5(1):8–17

    Google Scholar 

  81. Francis C, David V (2016) Inflammation regulates fibroblast growth factor 23 production. Curr Opin Nephrol Hypertens 25(4):325–332

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang Q, Doucet M, Tomlinson RE, Han X, Quarles LD, Collins MT et al (2016) The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Res 4(1):16011

    PubMed  PubMed Central  Google Scholar 

  83. Jimbo R, Kawakami-Mori F, Mu S, Hirohama D, Majtan B, Shimizu Y et al (2014) Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int 85(5):1103–1111

    CAS  PubMed  Google Scholar 

  84. Lim K, Lu T-S, Molostvov G, Lee C, Lam F, Zehnder D et al (2012) Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 125(18):2243–2255

    CAS  PubMed  Google Scholar 

  85. Lang F, Leibrock C, Pelzl L, Gawaz M, Pieske B, Alesutan I et al (2018) Therapeutic interference with vascular calcification—lessons from klotho-hypomorphic mice and beyond. Front Endocrinol. https://doi.org/10.3389/fendo.2018.00207

    Article  Google Scholar 

  86. Hu MC (2016) Klotho connects intermedin1–53 to suppression of vascular calcification in chronic kidney disease. Kidney Int 89(3):534–537

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu MC, Shi M, Zhang J, Quiñones H, Griffith C, Kuro-o M et al (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22(1):124–136

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bi X, Yang K, Zhang B, Zhao J (2020) The protective role of Klotho in CKD-associated cardiovascular disease. Kidney Dis 6(6):395–406

    Google Scholar 

  89. Yamada S, Giachelli CM (2017) Vascular calcification in CKD-MBD: roles for phosphate, FGF23, and Klotho. Bone 100:87–93

    CAS  PubMed  Google Scholar 

  90. Li Q, Li Y, Liang L, Li J, Luo D, Liu Q et al (2018) Klotho negatively regulated aerobic glycolysis in colorectal cancer via ERK/HIF1α axis. Cell Commun Signal 16(1):26

    PubMed  PubMed Central  Google Scholar 

  91. Urabe A, Doi S, Nakashima A, Ike T, Morii K, Sasaki K et al (2021) Klotho deficiency intensifies hypoxia-induced expression of IFN-α/β through upregulation of RIG-I in kidneys. PLoS One 16(10):e0258856

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yuen NK, Ananthakrishnan S, Campbell MJ (2016) Hyperparathyroidism of renal disease. Permanente J 20(3):15–127

    Google Scholar 

  93. Wong A, Loots GG, Yellowley CE, Dosé AC, Genetos DC (2015) Parathyroid hormone regulation of hypoxia-inducible factor signaling in osteoblastic cells. Bone 81:97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Frey JL, Stonko DP, Faugere M-C, Riddle RC (2014) Hypoxia-inducible factor-1α restricts the anabolic actions of parathyroid hormone. Bone Research 2(1):14005

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dong JM, Leung T, Manser E, Lim L (1998) cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKα. J Biol Chem 273(35):22554–22562

    CAS  PubMed  Google Scholar 

  96. Radeff JM, Nagy Z, Stern PH (2004) Rho and Rho kinase are involved in parathyroid hormone-stimulated protein kinase Cα translocation and IL-6 promoter activity in osteoblastic cells. J Bone Miner Res 19(11):1882–1891

    CAS  PubMed  Google Scholar 

  97. Kazmers NH, Ma SA, Yoshida T, Stern PH (2009) Rho GTPase signaling and PTH 3–34, but not PTH 1–34, maintain the actin cytoskeleton and antagonize bisphosphonate effects in mouse osteoblastic MC3T3-E1 cells. Bone 45(1):52–60

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lau WL, Festing MH, Giachelli CM (2010) Phosphate and vascular calcification: emerging role of the sodium-dependent phosphate co-transporter PiT-1. Thromb Haemost 104(3):464–470

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cozzolino M, Ciceri P, Galassi A, Mangano M, Carugo S, Capelli I et al (2019) The key role of phosphate on vascular calcification. Toxins 11(4):213

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Savica V, Bellinghieri G, Santoro D (2007) Phosphorus-related mechanisms of vascular calcification. Arch Internal Med 167(21):2368

    Google Scholar 

  101. Terai K, Nara H, Takakura K, Mizukami K, Sanagi M, Fukushima S et al (2009) Vascular calcification and secondary hyperparathyroidism of severe chronic kidney disease and its relation to serum phosphate and calcium levels. Br J Pharmacol 156(8):1267–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM (2011) Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 109(6):697–711

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mizobuchi M, Towler D, Slatopolsky E (2009) Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol 20(7):1453–1464

    CAS  PubMed  Google Scholar 

  104. Salnikow K, Kluz T, Costa M, Piquemal D, Demidenko ZN, Xie K et al (2002) The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol 22(6):1734–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Berchner-Pfannschmidt U, Petrat F, Doege K, Trinidad B, Freitag P, Metzen E et al (2004) Chelation of cellular calcium modulates hypoxia-inducible gene expression through activation of hypoxia-inducible factor-1α. J Biol Chem 279(43):44976–44986

    CAS  PubMed  Google Scholar 

  106. Neradova A, Wasilewski G, Prisco S, Leenders P, Caron M, Welting T et al (2021) Combining phosphate binder therapy with vitamin K2 inhibits vascular calcification in an experimental animal model of kidney failure. Nephrol Dial Transplant. 2022 Mar 25;37(4):652–662

  107. Kurnatowska I, Grzelak P, Masajtis-Zagajewska A, Kaczmarska M, Stefańczyk L, Vermeer C et al (2015) Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3–5. Pol Arch Med Wewn 125(9):631–640

    PubMed  Google Scholar 

  108. Nagy A, Pethő D, Gáll T, Zavaczki E, Nyitrai M, Posta J et al (2019) Zinc inhibits HIF-prolyl hydroxylase inhibitor-aggravated VSMC calcification induced by high phosphate. Front Physiol 10:1584

    PubMed  Google Scholar 

  109. Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H et al (2019) Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 9(1):14754

    PubMed  PubMed Central  Google Scholar 

  110. O’Neill J, Fasching A, Pihl L, Patinha D, Franzén S, Palm F (2015) Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol 309(3):F227–F234

    CAS  Google Scholar 

  111. Packer M (2020) Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: a novel conceptual framework. Diabetes Obes Metab 22(5):734–742

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Contributions

SC, DU, MK contributed substantially to the conception or design of the work, or the acquisition, analysis, or interpretation of data for the work. SC, DU, MC and MK drafted the work or revised it critically for important intellectual content.

Corresponding author

Correspondence to Mehmet Kanbay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copur, S., Ucku, D., Cozzolino, M. et al. Hypoxia-inducible factor signaling in vascular calcification in chronic kidney disease patients. J Nephrol 35, 2205–2213 (2022). https://doi.org/10.1007/s40620-022-01432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-022-01432-8

Keywords

Navigation