Skip to main content

Advertisement

Log in

Renal disorders in rheumatologic diseases: the spectrum is changing (Part 1: connective tissue diseases)

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

The kidney is frequently involved by autoimmune rheumatic diseases. The renal manifestations may be variable, ranging from asymptomatic proteinuria and microscopic haematuria to nephrotic syndrome and rapidly progressive glomerulonephritis or vasculitis. In a number of cases the kidney involvement is related to the treatment of the original disease and may represent a major cause of morbidity and mortality. Thus, it is important for nephrologists and rheumatologists to remember that dysfunction of the kidney may be part of the primary systemic disorder or consequence of its pharmacotherapy. In the first part of this review we will analyse the kidney involvement in four autoimmune connective tissue diseases: systemic lupus erythematosus, Sjögren syndrome, polymyositis/dermatomyositis, and systemic sclerosis. Renal disease is common in lupus and is a main cause of morbidity and mortality. About 10% of patients with Sjögren syndrome may present interstitial nephritis or, more rarely, glomerulonephritis. Myoglobinuria and acute kidney injury is a frequent complication of polymyositis. Renal disease is one of the most serious complications of systemic sclerosis and may present with a dramatic renal crisis, characterized by malignant hypertension, oligo-anuria, and microangiopathic thrombocytopenic anaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2

Similar content being viewed by others

References

  1. Bonanni A, Vaglio A, Bruschi M, Sinico RA, Cavagna L, Moroni G et al (2015) Multi-antibody composition in lupus nephritis: isotype and antigen specificity make the difference. Autoimmun rev 14(8):692–702

    Article  CAS  PubMed  Google Scholar 

  2. Bruschi M, Sinico RA, Moroni G, Pratesi F, Migliorini P, Galetti M et al (2014) Glomerular autoimmune multicomponents of human lupus nephritis in vivo: α-enolase and annexin AI. J Am Soc Nephrol 25(11):2483–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kinloch AJ, Chang A, Ko K, Dunand CJH, Henderson S, Maienschein-Cline M et al (2014) Vimentin is a dominant target of in situ humoral immunity in human lupus tubulointerstitial nephritis arthritis. Rheumatol 66(12):3359–3370

    CAS  Google Scholar 

  4. Bruschi M, Galetti M, Sinico RA, Moroni G, Bonanni A, Radice A et al (2015) Glomerular autoimmune multicomponents of human lupus nephritis in vivo (2): planted antigens. J Am Soc Nephrol 26(8):1905–1924

    Article  CAS  PubMed  Google Scholar 

  5. Davidson A (2016) (2016) What is damaging the kidney in lupus nephritis? Nat Rev Rheumatol 12:143–153

    Article  CAS  PubMed  Google Scholar 

  6. Fu J, Lee K, Chuang PY, Liu Z, He JC (2015) Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol 308(4):F287–F297

    Article  CAS  PubMed  Google Scholar 

  7. Maria NI, Davidson A (2020) Protecting the kidney in systemic lupus erythematosus:from diagnosis to therapy. Nat Rev Rheumatol 12:67. https://doi.org/10.1038/s41584-020-0401-9

    Article  Google Scholar 

  8. Crow MK (2014) Type I interferon in the pathogenesis of lupus. J Immunol 192:5459–5468

    Article  CAS  PubMed  Google Scholar 

  9. Bassi NA, Ghirardello A, Blank M, Zampieri S, Sarzi-Puttini P, Mantovani A et al (2010) IgG anti-pentraxin 3 antibodies in systemic lupus erythematosus. Ann Rheum Dis 69:1704–1710

    Article  CAS  PubMed  Google Scholar 

  10. de Oliveira T, Souza DG, Teixeira MM, Amaral FA (2019) Tissue dependent role of PTX3 during ischemia-reperfusion injury. Front Immunol 10:1461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Bassi N, Del Prete D, Ghirardello A, Gatto M, Ceol M, Zen M et al (2015) PTX3, anti-PTX3, and anti-C1q autoantibodies in lupus glomerulonephritis. Clin Rev Allergy Immunol 49:217–226

    Article  CAS  PubMed  Google Scholar 

  12. Gatto M, Radu C, Luisetto R, Ghirardello A, Bonsembiante F, Trez D et al (2020) Immunization with pentraxin3 prevents transition from subclinical to clinical lupus nephritis in lupus-prone mice: insights from renal ultrastructural findings. J Autoimmun. https://doi.org/10.1016/j.jaut.2020.102443

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB et al (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 15(2):241–250

    Article  PubMed  Google Scholar 

  14. Sciascia S, Radin M, Cecchi I, Fenoglio R, De Marchi A, Besso L, Baldovino S et al (2020) Anti-beta-2-glycoprotein I domain 1 identifies antiphospholipid antibodies-related injuries in patients with concomitant lupus nephritis. J Nephrol 1:8. https://doi.org/10.1007/s40620-019-00698-9

    Article  CAS  Google Scholar 

  15. Ding X, Chen C, Zhang J, Lu G (2020) Antiphospholipid antibodies in patients with proliferative and membranous lupus nephritis. Clin Rheumatol 39(5):1531–1535

    Article  CAS  PubMed  Google Scholar 

  16. Fanouriakis A, Kostopoulou M, Cheema K, Anders HJ, Aringer M, Bajema I et al (2020) 2019 Update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann Rheum Dis 79:713–723

    Article  CAS  PubMed  Google Scholar 

  17. Wakasugi D, Gono T, Kawaguchi Y, Hara M, Koseki Y, Katsumata Y et al (2012) Frequency of class III and IV nephritis in systemic lupus erythematosus without clinical renal involvement: an analysis of predictive measures. J Rheumatol 39(1):79–85

    Article  CAS  PubMed  Google Scholar 

  18. Christopher-Stine L, Siedner M, Lin J, Haas M, Parekh H, Petri M, Fine DM (2007) Renal biopsy in lupus patients with low levels of proteinuria. J Rheumatol 34(2):332–335

    PubMed  Google Scholar 

  19. Almaani S, Meara A, Rovin BH (2017) Update on lupus nephritis. Clin J Am Soc Nephrol 12(5):825–835

    Article  PubMed  Google Scholar 

  20. Moroni G, Depetri F, Ponticelli C (2016) Lupus nephritis: when and how often to biopsy and what does it mean? J Autoimmun 74:27–40

    Article  PubMed  Google Scholar 

  21. Moroni G, Quaglini S, Gallelli B, Banfi G, Messa P, Ponticelli C (2013) Progressive improvement of patient and renal survival and reduction of morbidity over time in patients with lupus nephritis (LN) followed for 20 years. Lupus 22(8):80–88

    Article  Google Scholar 

  22. Parodis I, Tamirou F, Houssiau FA (2020) Prediction of prognosis and renal outcome in lupus nephritis. Lupus Sci Med 18(1):389. https://doi.org/10.1136/lupus-2020-000389

    Article  Google Scholar 

  23. Falasinnu T, O’Shaughnessy M, Troxell ML, Charu V, Weisman H, Simard JF (2019) A review of non-immune mediated kidney disease in sytemic lupus erythematosus: a hypothetical model of putative risk factors. Semin Arthritis Rheum 49(19):30702–30704. https://doi.org/10.1016/j.semarthrit.2019.10.006

    Article  CAS  Google Scholar 

  24. Sciascia S, Cuadrado MJ, Khamashta M, Roccatello D (2014) Renal involvement in antiphospholipid syndrome. Nat Rev Nephrol 10(5):279–289

    Article  CAS  PubMed  Google Scholar 

  25. Hajji M, Jebali H, Mrad A, Blel Y, Brahmi N, Kheder R et al (2018) Nephrotoxicity of ciprofloxacin: five cases and a review of the literature. Drug Saf Case Rep 18(1):17

    Article  Google Scholar 

  26. Milburn J, Jones R, Levy JB (2017) Renal effects of novel antiretroviral drugs. Nephrol Dial Transplant 32(3):434–439

    CAS  PubMed  Google Scholar 

  27. Bakhriansyah M, Souverein PC, van den Hoogen MWF, de Boer A, Klungel OH (2019) Risk of nephrotic syndrome for non-steroidal anti-inflammatory drug users. Clin J Am Soc Nephrol 14(9):1355–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jorge A, Wallace ZS, Zhang Y, Lu N, Costenbader KH, Choi HK (2019) (2019) All-cause and cause-specific mortality trends of end-stage renal disease due to lupus nephritis from 1995 to 2014. Arthritis Rheumatol 71(3):403–410

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moroni G, Vercelloni PG, Quaglini S, Gatto M, Gianfreda D, Sacchi L et al (2018) Changing patterns in clinical-histological presentation and renal outcome over the last five decades in a cohort of 499 patients with lupus nephritis. Ann Rheum Dis 77(9):1318–1325

    Article  CAS  PubMed  Google Scholar 

  30. Houssiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, Garrido R, Danieli MG et al (2002) Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 46(8):2121–2131

    Article  CAS  PubMed  Google Scholar 

  31. Ponticelli C, Glassock RJ, Moroni G (2010) Induction and maintenance therapy in proliferative lupus nephritis. J Nephrol 23(1):9–16

    CAS  PubMed  Google Scholar 

  32. Deng J, Huo D, Wu Q, Yang Z, Liao Y (2012) A meta-analysis of randomized controlled trials comparing tacrolimus with intravenous cyclophosphamide in the induction treatment for lupus nephritis. Tohoku J Exp Med 227(4):281–288

    Article  CAS  PubMed  Google Scholar 

  33. Moroni G, Raffiotta F, Trezzi B, Giglio E, Mezzina N, Del N et al (2014) Rituximab vs. mycophenolate and vs. cyclophosphamide pulses for induction therapy of active lupus nephritis: a clinical observational study. Rheumatology (Oxford) 53(9):1570–1577

    Article  CAS  Google Scholar 

  34. Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J et al (2012) Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study. Arthritis Rheum 64:1215–1226

    Article  CAS  PubMed  Google Scholar 

  35. Almaani S, Rovin BH (2019) B-cell therapy in lupus nephritis: an overview. Nephrol Dial Transplant 34(1):22–29

    Article  CAS  PubMed  Google Scholar 

  36. Dooley MA, Jayne D, Ginzler EM, Isenberg D, Olsen NJ, Wofsy D et al (2011) ALMS group mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med 365(20):1886–1895

    Article  CAS  PubMed  Google Scholar 

  37. Moroni G, Doria A, Mosca M, Alberighi OD, Ferraccioli G, Todesco S et al (2006) A randomized pilot trial comparing cyclosporine and azathioprine for maintenance therapy in diffuse lupus nephritis over 4 years. Clin J Am Soc Nephrol 1(5):925–932

    Article  CAS  PubMed  Google Scholar 

  38. Sheikholeslami M, Hajialilo M, Rasi Hashemi SS, Malek Mahdavi A, Gojazadeh M, Khabbazi A (2018) Low dose cyclosporine a in the treatment of resistant proliferative lupus nephritis. Mod Rheumatol 28(3):523–529

    Article  CAS  PubMed  Google Scholar 

  39. Ayoub I, Rovin BH (2017) Calcineurin inhibitors in the treatment of lupus nephritis: a hare versus turtle story? J Am Soc Nephrol 28(12):3435–3437

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rovin BH, Solomons N, Pendergraft WF, Dooley MA, Tumlin J, Romero-Diaz J, Lysenko L, Navarra SV, Huizinga RB (2019) A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int 95(1):219–231

    Article  CAS  PubMed  Google Scholar 

  41. Binda V, Trezzi B, Del Papa N, Beretta L, Frontini G, Porata G et al (2020 Jan 30) 2020) Belimumab may decrease flare rate and allow glucocorticoid withdrawal in lupus nephritis (including dialysis and transplanted patient. J Nephrol. https://doi.org/10.1007/s40620-020-00706-3

    Article  PubMed  Google Scholar 

  42. Zhang H, Liu Z, Zhou M, Liu Z, Chen J, Xing C et al (2017) Multitarget therapy for maintenance treatment of lupus nephritis. J Am Soc Nephrol 28(12):3671–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ponticelli C, Moroni G (2017) Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf 16(3):411–419

    Article  CAS  PubMed  Google Scholar 

  44. Moroni G, Longhi S, Giglio E, Messa P, Ponticelli C (2013) What happens after complete withdrawal of therapy in patients with lupus nephritis. Clin Exp Rheumatol 31(4 Suppl 78):S75–81

    PubMed  Google Scholar 

  45. Malvar A, Alberton V, Lococo B, Ferrari M, Delgado P, Nagaraja HN, Rovin BH (2020) Kidney biopsy-based management of maintenance immunosuppression is safe and may ameliorate flare rate in lupus nephritis. Kidney Int 97(1):156–162

    Article  CAS  PubMed  Google Scholar 

  46. Francois H, Mariette X (2016) Renal involvement in primary Sjögren syndrome. Nat Rev Nephrol 12(2):82–93

    Article  CAS  PubMed  Google Scholar 

  47. Jasiek M, Karras A, Le Guern V, Krastinova E, Mesbah R, Faguer S et al (2017) A multicentre study of 95 biopsy-proven cases of renal disease in primary Sjögren’s syndrome. Rheumatology (Oxford) 56(3):362–370

    CAS  Google Scholar 

  48. Evans RD, Laing CM, Ciurtin C, Walsh SB (2016) Tubulointerstitial nephritis in primary Sjögren syndrome: clinical manifestations and response to treatment. BMC Musculoskelet Disord 5(17):2. https://doi.org/10.1186/s12891-015-0858-x

    Article  CAS  Google Scholar 

  49. Sandhya P, Danda D, Rajaratnam S, Thomas N (2014) Sjögren’s, renal tubular acidosis and osteomalacia–An Asian Indian Series. Open Rheumatol J 8:103–109

    Article  PubMed  PubMed Central  Google Scholar 

  50. Krieger NS, Frick KK, Bushinsky DA (2004) Mechanism of acid-induced bone resorption. Curr Opin Nephrol Hypertens 13(4):423–436

    Article  CAS  PubMed  Google Scholar 

  51. Vallés PG, Batlle D (2018) Hypokalemic Distal renal tubular acidosis. Hypokalemic distal renal tubular acidosis. Adv Chronic Kidney Dis 25(4):303–320

    Article  PubMed  Google Scholar 

  52. Haque SK, Ariceta G, Battle D (2012) Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 27(12):4273–4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodriguez Soriano J (2002) Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 13:2160–2170

    Article  PubMed  Google Scholar 

  54. Yang YS, Peng CH, Sia SK, Huang CN (2007) Acquired hypophosphatemia osteomalacia associated with Fanconi’s syndrome in Sjögren’s syndrome. Rheumatol Int 27(6):593–597

    Article  PubMed  Google Scholar 

  55. Kobayashi T, Muto S, Nemoto J, Miyata Y, Ishiharajima S, Hironaka M et al (2006) Fanconi’s syndrome and distal (type 1) renal tubular acidosis in a patient with primary Sjögren’s syndrome with monoclonal gammopathy of undetermined significance. Clin Nephrol 65(6):427–432

    Article  CAS  PubMed  Google Scholar 

  56. Bredberg A, Henriksson G, Larsson A et al (2003) A role of the macrophage in Sjögen’s syndrome? Scand J Rheumatol 32:255

    Article  CAS  PubMed  Google Scholar 

  57. Maripuri S, Grande JP, Osborn TG, Fervenza FC, Matteson EL, Donadio JV, Hogan MC (2009) Renal involvement in primary Sjögren’s syndrome: a clinicopathologic study. Clin J Am Soc Nephrol 4(9):1423–1431

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bossini N, Savoldi S, Franceschini F, Mombelloni S, Baronio M et al (2001) Clinical and morphological features of kidney involvement in primary Sjögren’s syndrome. Nephrol Dial Transplant 16(12):2328–2333

    Article  CAS  PubMed  Google Scholar 

  59. Kidder D, Rutherford E, Kipgen D et al (2015) Kidney biopsy findings in primary Sjögren syndrome. Nephrol Dial Transplant 30(8):1363–1369

    Article  PubMed  Google Scholar 

  60. Yang HX, Wang J, Wen YB, Fei YY, Jiang MD, Zhou MY (2018) Renal involvement in primary Sjögren’s syndrome: a retrospective study of 103 biopsy-proven cases from a single center in China. Int J Rheum Dis 21(1):223–229

    Article  CAS  PubMed  Google Scholar 

  61. François H, Mariette X (2016) (2016) Renal involvement in primary Sjögren syndrome. Nat Rev Nephrol 12(2):82–93

    Article  PubMed  CAS  Google Scholar 

  62. Dabadghao S, Aggarwal A, Arora P, Pandey R, Misra R (1995) Glomerulonephritis leading to end stage renal disease in a patient with primary Sjogren syndrome. Clin Exp Rheumatol 13:509–511

    CAS  PubMed  Google Scholar 

  63. Cortez MS, Sturgill BC, Bolton WK (1995) Membranoproliferative glomerulonephritis with primary Sjogren’s syndrome. Am J Kidney Dis 25:632–636

    Article  CAS  PubMed  Google Scholar 

  64. Pasoto SG, de Adriano V, Bonfa E (2019) Sjögren’s syndrome and systemic lupus erythematosus: links and risks. Open Access Rheumatol 11:33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Imgenberg-Kreuz J, Almlöf JC, Leonard D, Sjöwall C, Syvänen AC, Rönnblom L et al (2019) Shared and unique patterns of dna methylation in systemic lupus erythematosus and primary Sjögren’s syndrome. Front Immunol 10:1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anand A, Krishna GG, Sibley RK, Kambham N (2015) Sjögren syndrome and cryoglobulinemic glomerulonephritis. Am J Kidney Dis 66(3):532–535

    Article  PubMed  Google Scholar 

  67. Goules AV, Tatouli IP, Moutsopoulos HM, Tzioufas AG (2013) Clinically significant renal involvement in primary Sjögren’s syndrome: clinical presentation and outcome. Arthr Rheum 65(11):2945–2953

    Article  Google Scholar 

  68. Kidder D, Rutherford E, Kipgen D, Fleming S, Geddes C, Stewart GA (2015) Kidney biopsy findings in primary Sjögren syndrome. Nephrol Dial Transplant 30(8):1363–1369

    Article  PubMed  Google Scholar 

  69. Evans RDR, Laing CM, Ciurtin C, Walsh SB (2016) Tubulointerstitial nephritis in primary Sjögren syndrome: clinical manifestations and response to treatment. BMC Musculoskelet Disord 17:2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Jain A, Srinivas BH, Emmanuel D, Jain VK, Parameshwaran FS, Negi VS (2018) Renal involvement in primary Sjogren’s syndrome: a prospective cohort study. Rheumatol Int 38(12):2251–2262

    Article  PubMed  Google Scholar 

  71. Ramos-Casals M, Brito-Zerón P, Bombardieri S, Bootsma H, Dörner T et al (2020) EULAR-Sjögren syndrome task force group. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann Rheum Dis 79(1):3–18

    Article  CAS  PubMed  Google Scholar 

  72. Dalakas MC (2015) Inflammatory muscle diseases. N Engl J Med 373:393–394

    Article  CAS  PubMed  Google Scholar 

  73. Christopher-Stine L, Plotz PH (2004) Myositis: an update on pathogenesis. Curr Opin Rheumatol 16:700–706

    Article  CAS  PubMed  Google Scholar 

  74. Yen TH, Lai PC, Chen CC, Hsueh S, Huang JY (2005) Renal involvement in patients with polymyositis and dermatomyositis. Int J Clin Pract 59(2):188–193

    Article  PubMed  Google Scholar 

  75. Couvrat-Desvergnes G, Masseau A, Benveniste O, Bruel A, Hervier B, Mussini JM et al (2014) The spectrum of renal involvement in patients with inflammatory myopathies. Medicine (Baltimore) 93(1):33–41

    Article  CAS  Google Scholar 

  76. Kim HW, Choi JR, Jang SJ, Chang YS, Bang BK, Park CW (2005) Recurrent rhabdomyolysis and myoglobinuric acute renal failure in a patient with polymyositis. Nephrol Dial Transplant 20(10):2255–2258

    Article  PubMed  Google Scholar 

  77. Cucchiari D, Angelini C (2017) Renal involvement in Idiopathic inflammatory Myopathies. Clin Rev Allergy Immunol 52(1):99–107

    Article  CAS  PubMed  Google Scholar 

  78. Thakur V, DeSalvo J, McGrath H, Weed S, Garcia C (1996) Case report: Polymyositis-induced myoglobinuric acute renal failure. Am J Med Sci 312:85–87

    CAS  PubMed  Google Scholar 

  79. Lewington AJ, D’Souza R, Carr S, O’Reilly K, Warwick GL (1996) Polymyositis: a cause of acute renal failure. Nephrol Dial Transplant 11:699–701

    Article  CAS  PubMed  Google Scholar 

  80. Zager RA (1996) Rhabdomyolysis and myohemoglobinuric acute renal failure. Kidney Int 49:314–326

    Article  CAS  PubMed  Google Scholar 

  81. Marisiddappa L, Desai AM, Kedlaya PG, Sathish R (2018) Recurrent Episodic myoglobinuric acute kidney injury as presenting manifestation of idiopathic polymyositis. Saudi J Kid Dis Transpl 29(1):210–213

    Article  Google Scholar 

  82. Bosch X, Poch E, Grau JM (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 2(1):62–72

    Article  Google Scholar 

  83. Mantoo MR, Tripathy SK, Phulware RH, Bagri NK, Hari P, Barwad A (2019) Juvenile dermatomyositis with IgA nephropathy: case-based review. Rheumatol Int 39(3):577–581

    Article  PubMed  Google Scholar 

  84. Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE (2015) Pathogenesis of systemic sclerosis. Front Immunol 6:272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Santaniello A, Salazar G, Lenna S, Antonioli R, Colombo G, Beretta L et al (2006) HLA-B35 upregulates the production of endothelin-1 in HLA-transfected cells: a possible pathogenetic role in pulmonary hypertension. Tissue Antigens 68(3):239–244

    Article  CAS  PubMed  Google Scholar 

  86. Lenna S, Townsend DM, Tan FK, Kapanadze B, Markiewicz M, Trojanowska M et al (2010) HLA-B35 upregulates endothelin-1 and downregulates endothelial nitric oxide synthase via endoplasmic reticulum stress response in endothelial cells. J Immunol 84(9):4654–4661

    Article  CAS  Google Scholar 

  87. Martin JE, Assassi S, Diaz-Gallo LM, Broen JC, Simeon CP, Castellvi I et al (2013) A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum Mol Genet 22(19):4021–4029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Penn H, Quillinan N, Khan K, Chakravarty K, Ong VH, Burns A, Denton CP (2013) Targeting the endothelin axis in scleroderma renal crisis: rationale and feasibility. QJM 106(9):839–848

    Article  CAS  PubMed  Google Scholar 

  89. Takagi K, Kawaguchi Y, Hara M, Sugiura T, Harigai M, Kamatani N (2003) Serum nitric oxide (NO) levels in systemic sclerosis patients: correlation between NO levels and clinical features. Clin Exp Immunol 134(3):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shiwen X, Leask A, Abraham DJ, Fonseca C (2009) Endothelin receptor selectivity: evidence from in vitro and pre-clinical models of scleroderma. Eur J Clin Invest 39(Suppl 2):19–26

    Article  CAS  PubMed  Google Scholar 

  91. Postlethwaite AE, Chiang TM (2007) Platelet contributions to the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 19(6):574–599

    Article  PubMed  Google Scholar 

  92. Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P (1992) Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 166(3):255–263

    Article  CAS  PubMed  Google Scholar 

  93. Penn H, Howie AJ, Kingdon EJ, Bunn CC, Stratton RJ, Black CM, Burns A, Denton CP (2007) Scleroderma renal crisis: patient characteristics and long-term outcomes. QJM 100(8):485–494

    Article  CAS  PubMed  Google Scholar 

  94. Helfrich DJ, Banner B, Steen VD, Medsger TA (1989) Normotensive renal failure in systemic sclerosis. Arthritis Rheum 32(9):1128–1134

    Article  CAS  PubMed  Google Scholar 

  95. Yamashita H, Kamei R, Kaneko H (2019) Classifications of scleroderma renal crisis and reconsideration of its pathophysiology. Rheumatology (Oxford) 58(12):2099–2106

    Article  Google Scholar 

  96. Black CM, Denton CP (2005) The patient with scleroderma-systemic sclerosis. In: Davison AM, Cameron JS, Grunfeld JP, Ponticelli C, Ritz E, Winearls CG, van Ypersele C (eds) Oxford Textbook of Clinical Nephrology, 3rd edn. Oxford University Press, Oxford, pp 843–854

    Google Scholar 

  97. Batal I, Domsic RT, Medsger TA, Bastacky S (2010) Scleroderma crisis: a pathology perspective. Int J Rheumatol 5:4–37. https://doi.org/10.1155/2010/543704

    Article  Google Scholar 

  98. Ichikawa K, Konta T, Sato H, Ueda Y, Yokoyama H (2017) The clinical and pathological characteristics of nephropathies in connective tissue diseases in the Japan Renal Biopsy Registry (J-RBR). Clin Exp Nephrol 21(6):1024–1029

    Article  CAS  PubMed  Google Scholar 

  99. Traub XM (1983) Hypertension and renal failure (scleroderma renal crisis) in progressive systemic sclerosis. Review of 25 year experience with 68 cases. Medicine 62:335–352

    Article  CAS  PubMed  Google Scholar 

  100. Bose N, Chiesa-Vottero A, Chatterjee S (2015) Scleroderma renal crisis. Semin Arthritis Rheum 44(6):687–694

    Article  CAS  PubMed  Google Scholar 

  101. Turk M, Pope JE (2016) The frequency of scleroderma renal crisis over time: a metaanalysis. J Rheumatol 43(7):1350–1355

    Article  PubMed  Google Scholar 

  102. Steen JP, Shapiro AP, Medsger TA (1990) Outcome of renal crisis in systemic sclerosis: relation to availability of angiotensin converting enzyme (ACE) inhibitors. Ann Intern Med 113:352–357

    Article  CAS  PubMed  Google Scholar 

  103. Walker JG, Ahern MJ, Smith MD, Coleman M, Pile K, Rischmueller M et al (2003) Scleroderma renal crisis: poor outcome despite aggressive antihypertensive treatment. Intern Med J 33(5–6):216–220

    Article  CAS  PubMed  Google Scholar 

  104. Steen VD, Medsger TA (2000) Long-term outcomes of scleroderma renal crisis. Ann Intern Med 133:600–603

    Article  CAS  PubMed  Google Scholar 

  105. Penn H, Howie AJ, Kingdon EJ, Bunn CC, Stratton RJ, Black CM et al (2007) Scleroderma renal crisis: patient characteristics and long-term outcomes. QJM 100(8):485–494

    Article  CAS  PubMed  Google Scholar 

  106. Cozzi F, Marson P, Cardarelli S, Favaro M, Tison T, Tonello M et al (2012) Prognosis of scleroderma renal crisis: a long-term observational study. Nephrol Dial Transplant 27(12):4398–4403

    Article  CAS  PubMed  Google Scholar 

  107. Lavergne A, Pladys A, Couchoud C, Lassalle M, Vigneau C (2020) Systemic sclerosis and end-stage renal disease: study of patient characteristics, follow-up and outcomes in France. J Nephrol. 24:12. https://doi.org/10.1007/s40620-020-00746-9

    Article  CAS  Google Scholar 

  108. Caplin NJ, Dikman S, Winston J, Spiera H, Uribarri J (1999) Recurrence of scleroderma in a renal allograft from an identical twin sister. Am J Kidney Dis 33(4):7

    Article  Google Scholar 

  109. Saxena N, Djamali A, Astor BC, Mohamed M, Mandelbrot D, Parajuli S (2017) A single center kidney transplant experience among ten Caucasian females with end-stage renal disease due to scleroderma. Clin Nephrol 88(1):40–44

    Article  PubMed  Google Scholar 

  110. Denton CP, Khanna D (2017) Systemic sclerosis. Lancet 390(10103):1685–1699

    Article  PubMed  Google Scholar 

  111. Brokmann JC, Rossaint R, Müller M, Fitzner C, Villa L, Beckers SK, Bergrath S (2017) Blood pressure management and guideline adherence in hypertensive emergencies and urgencies: a comparison between telemedically supported and conventional out-of-hospital care. J Clin Hypertens (Greenwich) 19(7):704–712

    Article  Google Scholar 

  112. Shah M, Patil S, Patel B, Arora S, Patel N, Garg L (2017) Trends in hospitalization for hypertensive emergency, and relationship of end-organ damage with in-hospital mortality. Am J Hypertens 30(7):700–706

    Article  PubMed  Google Scholar 

  113. van der Merwe W, van der Merwe V (2013) Malignant hypertension: a preventable emergency. N Z Med 126(1380):39–45

    Google Scholar 

  114. Zanatta E, Polito P, Favaro M, Larosa M, Marson P, Cozzi F, Doria A (2018) Therapy of scleroderma renal crisis: State of the art. Autoimmun Rev 17(9):882–889

    Article  PubMed  Google Scholar 

  115. Montanelli G, Beretta L, Santaniello A, Scorza R (2013) Effect of dihydropyridine calcium channel blockers and glucocorticoids on the prevention and development of scleroderma renal crisis in an Italian case series. Clin Exp Rheumatol 31(2 Suppl 76):135–139

    PubMed  Google Scholar 

  116. Nagaraja V (2019) Management of scleroderma renal crisis. Curr Opin Rheumatol 31(3):223–230

    Article  CAS  PubMed  Google Scholar 

  117. Kfoury Baz EM, Mahfouz RA, Masri AF, Jamaleddine GW (2001) Thrombotic thrombocytopenic purpura in a case of scleroderma renal crisis treated with twice-daily therapeutic plasma exchange. Ren Fail 23(5):737–742

    Article  CAS  PubMed  Google Scholar 

  118. Shimizu T, Iwamoto N, Okamoto M, Endo Y, Tsuji S, Takatani A et al (2019) Scleroderma renal crisis complicated with thrombotic microangiopathy triggered by influenza b virus infection. Intern Med 58(3):441–445

    Article  PubMed  Google Scholar 

  119. Devresse A, Aydin S, Quintrec M, Demoulin N, Stordeur P, Lambert C, Gastoldi S, Pirson Y, Jadoul M, Morelle J (2016) Complement activation and effect of eculizumab in scleroderma renal crisis. Medicine (Baltimore) 95(30):44–59

    Article  CAS  Google Scholar 

  120. Allinovi M, Cirami CL, Caroti L, Antognoli G, Farsetti S, Amato MP, Minetti EE (2017) Thrombotic microangiopathy induced by interferon beta in patients with multiple sclerosis: three cases treated with eculizumab. Clin Kidney J 10(5):625–631

    Article  PubMed  PubMed Central  Google Scholar 

  121. Asif A, Nayer A, Haas CS (2017) Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J Nephrol 30(3):347–362

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Ponticelli.

Ethics declarations

Conflict of interest

The authors do not have any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within 3 years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponticelli, C., Doria, A. & Moroni, G. Renal disorders in rheumatologic diseases: the spectrum is changing (Part 1: connective tissue diseases). J Nephrol 34, 1069–1080 (2021). https://doi.org/10.1007/s40620-020-00772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00772-7

Keywords

Navigation