Skip to main content

Advertisement

Log in

Omics research in diabetic kidney disease: new biomarker dimensions and new understandings?

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

The use of “omics” is increasing in research areas looking to identify biomarkers or early preclinical signs of disease or to increase understanding of complex pathological processes that determines prognosis of the disease. Diabetic kidney disease is no exception as it is an area in need of further improvement of both understanding and prognosis. In addition, there is a notion that pretreatment investigations using techniques like proteomics, lipidomics and metabolomics can help individualize therapy thus fulfilling the wish for personalized medicine. An increasing number of cohort studies using these techniques are published, but only few have been validated in external cohorts or even replicated by other groups. In essence, to achieve clinical impact and usefulness, prospective validation is needed. So far, only the urinary proteomics based PRIORITY study has tried to do this, as discussed in this review. Other areas are promising, but are currently lacking such efforts. In this review we report and discuss the current status of urinary proteomics as well as plasma metabolomics and lipidomics with an overview of the results so far, and with some comments and perspectives regarding future developments and implementation. As is evident, these techniques are promising, but there is still some way before widespread clinical use can be foreseen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted by permission from Springer Nature: Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12: 668–679

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    CAS  PubMed  Google Scholar 

  2. Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L (2014) Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med 370(16):1514–1523

    CAS  PubMed  Google Scholar 

  3. Persson F, Rossing P (2018) Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int Suppl (2011) 8(1):2–7

    Google Scholar 

  4. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD et al (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care 37(10):2864–2883

    PubMed Central  PubMed  Google Scholar 

  5. Bjerg L, Hulman A, Carstensen B, Charles M, Witte DR, Jorgensen ME (2019) Effect of duration and burden of microvascular complications on mortality rate in type 1 diabetes: an observational clinical cohort study. Diabetologia 62:633–643

    PubMed  Google Scholar 

  6. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, de Boer IH (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24(2):302–308

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241(19):2035–2038

    CAS  PubMed  Google Scholar 

  8. Hayes A, Arima H, Woodward M, Chalmers J, Poulter N, Hamet P, Clarke P (2016) Changes in quality of life associated with complications of diabetes: results from the ADVANCE Study. Value Health 19(1):36–41

    PubMed  Google Scholar 

  9. Li R, Bilik D, Brown MB, Zhang P, Ettner SL, Ackermann RT, Crosson JC, Herman WH (2013) Medical costs associated with type 2 diabetes complications and comorbidities. Am J Manag Care 19(5):421–430

    PubMed Central  PubMed  Google Scholar 

  10. Vupputuri S, Kimes TM, Calloway MO, Christian JB, Bruhn D, Martin AA, Nichols GA (2014) The economic burden of progressive chronic kidney disease among patients with type 2 diabetes. J Diabetes Complicat 28(1):10–16

    Google Scholar 

  11. Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH, Doria A, Warram JH (2014) Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 37(1):226–234

    CAS  PubMed  Google Scholar 

  12. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E et al (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21(4):556–563

    PubMed  Google Scholar 

  13. Fiorentino M, Bolignano D, Tesar V, Pisano A, Biesen WV, Tripepi G, D’Arrigo G, Gesualdo L (2017) Group E-EIW: renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol Dial Transpl 32(1):97–110

    CAS  Google Scholar 

  14. Parving HH, Persson F, Rossing P (2015) Microalbuminuria: a parameter that has changed diabetes care. Diabetes Res Clin Pract 107(1):1–8

    CAS  PubMed  Google Scholar 

  15. Tabaei BP, Al-Kassab AS, Ilag LL, Zawacki CM, Herman WH (2001) Does microalbuminuria predict diabetic nephropathy? Diabetes Care 24(9):1560–1566

    CAS  PubMed  Google Scholar 

  16. Chen C, Wang C, Hu C, Han Y, Zhao L, Zhu X, Xiao L, Sun L (2017) Normoalbuminuric diabetic kidney disease. Front Med 11(3):310–318

    PubMed  Google Scholar 

  17. Keane WF, Brenner BM, de Zeeuw D, Grunfeld JP, McGill J, Mitch WE, Ribeiro AB, Shahinfar S, Simpson RL, Snapinn SM et al (2003) The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int 63(4):1499–1507

    PubMed  Google Scholar 

  18. National Kidney F (2012) KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis 60(5):850–886

    Google Scholar 

  19. Gaede P, Vedel P, Parving HH, Pedersen O (1999) Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 353(9153):617–622

    CAS  PubMed  Google Scholar 

  20. The Diabetes Control and Complications (DCCT) Research Group (1995) Effect of intensive therapy on the development and progression of diabetic nephropathy in the diabetes control and complications trial. Kidney Int 47(6):1703–1720

    Google Scholar 

  21. UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352(9131):854–865

    Google Scholar 

  22. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131):837–853

    Google Scholar 

  23. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, Cuddihy R, Cushman WC, Genuth S, Grimm RH Jr et al (2010) Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 376(9739):419–430

    PubMed Central  PubMed  Google Scholar 

  24. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334

    CAS  PubMed  Google Scholar 

  25. Mann JFE, Orsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornoe K, Zinman B, Buse JB, Committee LS et al (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377(9):839–848

    CAS  PubMed  Google Scholar 

  26. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844

    CAS  PubMed  Google Scholar 

  27. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(7):644–657

    CAS  PubMed  Google Scholar 

  28. Muskiet MHA, Tonneijck L, Huang Y, Liu M, Saremi A, Heerspink HJL, van Raalte DH (2018) Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 6(11):859–869

    CAS  PubMed  Google Scholar 

  29. Jardine MJ, Mahaffey KW, Neal B, Agarwal R, Bakris GL, Brenner BM, Bull S, Cannon CP, Charytan DM, de Zeeuw D et al (2017) The canagliflozin and renal endpoints in diabetes with established nephropathy clinical evaluation (CREDENCE) study rationale, design, and baseline characteristics. Am J Nephrol 46(6):462–472

    CAS  PubMed  Google Scholar 

  30. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380:2295–2306

    CAS  PubMed  Google Scholar 

  31. Bauer JH, Reams GP, Hewett J, Klachko D, Lau A, Messina C, Knaus V (1992) A randomized, double-blind, placebo-controlled trial to evaluate the effect of enalapril in patients with clinical diabetic nephropathy. Am J Kidney Dis 20(5):443–457

    CAS  PubMed  Google Scholar 

  32. Bjorck S, Nyberg G, Mulec H, Granerus G, Herlitz H, Aurell M (1986) Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy. Br Med J (Clin Res Ed) 293(6545):471–474

    CAS  Google Scholar 

  33. Parving HH, Hommel E, Smidt UM (1988) Protection of kidney function and decrease in albuminuria by captopril in insulin dependent diabetics with nephropathy. BMJ 297(6656):1086–1091

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Taguma Y, Kitamoto Y, Futaki G, Ueda H, Monma H, Ishizaki M, Takahashi H, Sekino H, Sasaki Y (1985) Effect of captopril on heavy proteinuria in azotemic diabetics. N Engl J Med 313(26):1617–1620

    CAS  PubMed  Google Scholar 

  35. Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving HH (2005) Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care 28(9):2106–2112

    CAS  PubMed  Google Scholar 

  36. Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Tarnow L, Rossing P, Parving HH (2006) Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int 70(3):536–542

    CAS  PubMed  Google Scholar 

  37. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, Remuzzi G, Rossing P, Schmieder RE, Nowack C et al (2015) Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314(9):884–894

    CAS  PubMed  Google Scholar 

  38. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Nowack C, Kolkhof P, Ferreira AC, Schloemer P, Filippatos G et al (2019) Design and baseline characteristics of the finerenone in reducing kidney failure and disease progression in diabetic kidney disease trial. Am J Nephrol 50(5):333–344

    CAS  PubMed  Google Scholar 

  39. Heerspink HJL, Andress DL, Bakris G, Brennan JJ, Correa-Rotter R, Hou FF, Kitzman DW, Kohan D, Makino H, McMurray J et al (2018) Baseline characteristics and enrichment results from the SONAR trial. Diabetes Obes Metab 20(8):1829–1835

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, Kitzman DW, Kohan D, Makino H, McMurray JJV et al (2019) Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393:1937–1947

    CAS  PubMed  Google Scholar 

  41. Hyotylainen T, Oresic M (2014) Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 55:43–60

    CAS  PubMed  Google Scholar 

  42. Oresic M, Vidal-Puig A, Hanninen V (2006) Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev Mol Diagn 6(4):575–585

    CAS  PubMed  Google Scholar 

  43. Kim K, Mall C, Taylor SL, Hitchcock S, Zhang C, Wettersten HI, Jones AD, Chapman A, Weiss RH (2014) Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS ONE 9(1):e86223

    PubMed Central  PubMed  Google Scholar 

  44. Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16(5):559–564

    CAS  PubMed  Google Scholar 

  45. Hyotylainen T, Oresic M (2015) Analytical lipidomics in metabolic and clinical research. Trends Endocrinol Metab 26(12):671–673

    CAS  PubMed  Google Scholar 

  46. Mischak H, Ioannidis JP, Argiles A, Attwood TK, Bongcam-Rudloff E, Broenstrup M, Charonis A, Chrousos GP, Delles C, Dominiczak A et al (2012) Implementation of proteomic biomarkers: making it work. Eur J Clin Invest 42(9):1027–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Davies R (2018) The metabolomic quest for a biomarker in chronic kidney disease. Clin Kidney J 11(5):694–703

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhao YY, Vaziri ND, Lin RC (2015) Lipidomics: new insight into kidney disease. Adv Clin Chem 68:153–175

    CAS  PubMed  Google Scholar 

  49. Persson F, Rossing P (2019) Urinary proteomics and precision medicine for chronic kidney disease: current status and future perspectives. Proteomics Clin Appl 13:e1800176

    PubMed  Google Scholar 

  50. Mulder S, Hamidi H, Kretzler M, Ju W (2018) An integrative systems biology approach for precision medicine in diabetic kidney disease. Diabetes Obes Metab 20(Suppl 3):6–13

    PubMed Central  PubMed  Google Scholar 

  51. Holmes MV, Ala-Korpela M, Smith GD (2017) Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 14(10):577–590

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Nassar AF, Wu T, Nassar SF, Wisnewski AV (2017) UPLC-MS for metabolomics: a giant step forward in support of pharmaceutical research. Drug Discov Today 22(2):463–470

    CAS  PubMed  Google Scholar 

  53. Ramautar R, Somsen GW, de Jong GJ (2019) CE-MS for metabolomics: developments and applications in the period 2016-2018. Electrophoresis 40(1):165–179

    CAS  PubMed  Google Scholar 

  54. Soininen P, Kangas AJ, Wurtz P, Suna T, Ala-Korpela M (2015) Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet 8(1):192–206

    CAS  PubMed  Google Scholar 

  55. Soininen P, Kangas AJ, Wurtz P, Tukiainen T, Tynkkynen T, Laatikainen R, Jarvelin MR, Kahonen M, Lehtimaki T, Viikari J et al (2009) High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 134(9):1781–1785

    CAS  PubMed  Google Scholar 

  56. Ibarra-Gonzalez I, Cruz-Bautista I, Bello-Chavolla OY, Vela-Amieva M, Pallares-Mendez R, Ruiz de Santiago YND, Salas-Tapia MF, Rosas-Flota X, Gonzalez-Acevedo M, Palacios-Penaloza A et al (2018) Optimization of kidney dysfunction prediction in diabetic kidney disease using targeted metabolomics. Acta Diabetol 55(11):1151–1161

    CAS  PubMed  Google Scholar 

  57. Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, Dakna M, Decramer S, Delles C, Dominiczak AF et al (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9(11):2424–2437

    PubMed Central  PubMed  Google Scholar 

  58. Mischak H (2015) Pro: urine proteomics as a liquid kidney biopsy: no more kidney punctures! Nephrol Dial Transpl 30(4):532–537

    CAS  Google Scholar 

  59. Magalhaes P, Pejchinovski M, Markoska K, Banasik M, Klinger M, Svec-Billa D, Rychlik I, Rroji M, Restivo A, Capasso G et al (2017) Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci Rep 7(1):16915

    PubMed Central  PubMed  Google Scholar 

  60. Argiles A, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U, Osaba L, Delles C, Mourad G, Weinberger KM et al (2013) CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS ONE 8(5):e62837

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Gu YM, Thijs L, Liu YP, Zhang Z, Jacobs L, Koeck T, Zurbig P, Lichtinghagen R, Brand K, Kuznetsova T et al (2014) The urinary proteome as correlate and predictor of renal function in a population study. Nephrol Dial Transpl 29(12):2260–2268

    CAS  Google Scholar 

  62. Schanstra JP, Zurbig P, Alkhalaf A, Argiles A, Bakker SJ, Beige J, Bilo HJ, Chatzikyrkou C, Dakna M, Dawson J et al (2015) Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol 26(8):1999–2010

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Zurbig P, Jerums G, Hovind P, Macisaac RJ, Mischak H, Nielsen SE, Panagiotopoulos S, Persson F, Rossing P (2012) Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61(12):3304–3313

    PubMed Central  PubMed  Google Scholar 

  64. Siwy J, Schanstra JP, Argiles A, Bakker SJ, Beige J, Boucek P, Brand K, Delles C, Duranton F, Fernandez-Fernandez B et al (2014) Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transpl 29(8):1563–1570

    CAS  Google Scholar 

  65. Roscioni SS, de Zeeuw D, Hellemons ME, Mischak H, Zurbig P, Bakker SJ, Gansevoort RT, Reinhard H, Persson F, Lajer M et al (2013) A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 56(2):259–267

    CAS  PubMed  Google Scholar 

  66. Pontillo C, Jacobs L, Staessen JA, Schanstra JP, Rossing P, Heerspink HJL, Siwy J, Mullen W, Vlahou A, Mischak H et al (2017) A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol Dial Transpl 32(9):1510–1516

    CAS  Google Scholar 

  67. Lindhardt M, Persson F, Zurbig P, Stalmach A, Mischak H, de Zeeuw D, Lambers Heerspink H, Klein R, Orchard T, Porta M et al (2017) Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dial Transpl 32(11):1866–1873

    CAS  Google Scholar 

  68. Pontillo C, Zhang ZY, Schanstra JP, Jacobs L, Zurbig P, Thijs L, Ramirez-Torres A, Heerspink HJL, Lindhardt M, Klein R et al (2017) Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney Int Rep 2(6):1066–1075

    PubMed Central  PubMed  Google Scholar 

  69. Lindhardt M, Persson F, Currie G, Pontillo C, Beige J, Delles C, von der Leyen H, Mischak H, Navis G, Noutsou M et al (2016) Proteomic prediction and renin angiotensin aldosterone system Inhibition prevention of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial. BMJ Open 6(3):e010310

    PubMed Central  PubMed  Google Scholar 

  70. Tofte N, Lindhardt M, Adamova K, Bakker SJL, Beige J, Beulens JWJ, Birkenfeld AL, Currie G, Delles C, Dimos I et al (2020) Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol 8(4):301–312

    CAS  PubMed  Google Scholar 

  71. Sekula P, Goek ON, Quaye L, Barrios C, Levey AS, Romisch-Margl W, Menni C, Yet I, Gieger C, Inker LA et al (2016) A metabolome-wide association study of kidney function and disease in the general population. J Am Soc Nephrol 27(4):1175–1188

    CAS  PubMed  Google Scholar 

  72. Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, Pu M, Sharma S, You YH, Wang L et al (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 24(11):1901–1912

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Makinen VP, Soininen P, Forsblom C, Parkkonen M, Ingman P, Kaski K, Groop PH, Ala-Korpela M, FinnDiane Study G (2006) Diagnosing diabetic nephropathy by 1H NMR metabonomics of serum. MAGMA 19(6):281–296

    CAS  PubMed  Google Scholar 

  74. Makinen VP, Tynkkynen T, Soininen P, Forsblom C, Peltola T, Kangas AJ, Groop PH, Ala-Korpela M (2012) Sphingomyelin is associated with kidney disease in type 1 diabetes (The FinnDiane Study). Metabolomics 8(3):369–375

    PubMed  Google Scholar 

  75. Tofte N, Vogelzangs N, Mook-Kanamori D, Brahimaj A, Nano J, Ahmadizar F, Willems van Dijk K, Frimodt-Moller M, Arts I, Beulens JWJ et al (2020) Plasma metabolomics identifies markers of impaired renal function: a meta-analysis of 3,089 persons with type 2 diabetes. J Clin Endocrinol Metab 105(7):dgaa173. https://doi.org/10.1210/clinem/dgaa173

    Article  PubMed  Google Scholar 

  76. Makinen VP, Soininen P, Forsblom C, Parkkonen M, Ingman P, Kaski K, Groop PH, Ala-Korpela M, FinnDiane Study G (2008) 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death. Mol Syst Biol 4:167

    PubMed Central  PubMed  Google Scholar 

  77. Makinen VP, Soininen P, Kangas AJ, Forsblom C, Tolonen N, Thorn LM, Viikari J, Raitakari OT, Savolainen M, Groop PH et al (2013) Triglyceride-cholesterol imbalance across lipoprotein subclasses predicts diabetic kidney disease and mortality in type 1 diabetes: the FinnDiane Study. J Intern Med 273(4):383–395

    PubMed  Google Scholar 

  78. Makinen VP, Tynkkynen T, Soininen P, Peltola T, Kangas AJ, Forsblom C, Thorn LM, Kaski K, Laatikainen R, Ala-Korpela M et al (2012) Metabolic diversity of progressive kidney disease in 325 patients with type 1 diabetes (the FinnDiane Study). J Proteome Res 11(3):1782–1790

    CAS  PubMed  Google Scholar 

  79. Barrios C, Zierer J, Wurtz P, Haller T, Metspalu A, Gieger C, Thorand B, Meisinger C, Waldenberger M, Raitakari O et al (2018) Circulating metabolic biomarkers of renal function in diabetic and non-diabetic populations. Sci Rep 8(1):15249

    PubMed Central  PubMed  Google Scholar 

  80. Welsh P, Rankin N, Li Q, Mark PB, Wurtz P, Ala-Korpela M, Marre M, Poulter N, Hamet P, Chalmers J et al (2018) Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia 61(7):1581–1591

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Liu JJ, Ghosh S, Kovalik JP, Ching J, Choi HW, Tavintharan S, Ong CN, Sum CF, Summers SA, Tai ES et al (2017) Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodeling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease. Kidney Int Rep 2(3):470–480

    PubMed  Google Scholar 

  82. Han LD, Xia JF, Liang QL, Wang Y, Wang YM, Hu P, Li P, Luo GA (2011) Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta 689(1):85–91

    CAS  PubMed  Google Scholar 

  83. Hirayama A, Nakashima E, Sugimoto M, Akiyama S, Sato W, Maruyama S, Matsuo S, Tomita M, Yuzawa Y, Soga T (2012) Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem 404(10):3101–3109

    CAS  PubMed  Google Scholar 

  84. Zhu C, Liang QL, Hu P, Wang YM, Luo GA (2011) Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta 85(4):1711–1720

    CAS  PubMed  Google Scholar 

  85. Haukka JK, Sandholm N, Forsblom C, Cobb JE, Groop PH, Ferrannini E (2018) Metabolomic profile predicts development of microalbuminuria in individuals with type 1 diabetes. Sci Rep 8(1):13853

    PubMed Central  PubMed  Google Scholar 

  86. Klein RL, Hammad SM, Baker NL, Hunt KJ, Al Gadban MM, Cleary PA, Virella G, Lopes-Virella MF, Group DER (2014) Decreased plasma levels of select very long chain ceramide species are associated with the development of nephropathy in type 1 diabetes. Metabolism 63(10):1287–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Niewczas MA, Mathew AV, Croall S, Byun J, Major M, Sabisetti VS, Smiles A, Bonventre JV, Pennathur S, Krolewski AS (2017) Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care 40(3):383–390

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Pena MJ, Lambers Heerspink HJ, Hellemons ME, Friedrich T, Dallmann G, Lajer M, Bakker SJ, Gansevoort RT, Rossing P, de Zeeuw D et al (2014) Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with type 2 diabetes mellitus. Diabet Med 31:1138–1147

    CAS  PubMed  Google Scholar 

  89. Solini A, Manca ML, Penno G, Pugliese G, Cobb JE, Ferrannini E (2016) Prediction of declining renal function and albuminuria in patients with type 2 diabetes by metabolomics. J Clin Endocrinol Metab 101(2):696–704

    CAS  PubMed  Google Scholar 

  90. Niewczas MA, Sirich TL, Mathew AV, Skupien J, Mohney RP, Warram JH, Smiles A, Huang X, Walker W, Byun J et al (2014) Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int 85(5):1214–1224

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Hu JR, Coresh J, Inker LA, Levey AS, Zheng Z, Rebholz CM, Tin A, Appel LJ, Chen J, Sarnak MJ et al (2018) Serum metabolites are associated with all-cause mortality in chronic kidney disease. Kidney Int 94(2):381–389

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Afshinnia F, Rajendiran TM, Karnovsky A, Soni T, Wang X, Xie D, Yang W, Shafi T, Weir MR, He J et al (2016) Lipidomic signature of progression of chronic kidney disease in the chronic renal insufficiency cohort. Kidney Int Rep 1(4):256–268

    PubMed Central  PubMed  Google Scholar 

  93. Luo S, Coresh J, Tin A, Rebholz CM, Appel LJ, Chen J, Vasan RS, Anderson AH, Feldman HI, Kimmel PL et al (2019) Serum metabolomic alterations associated with proteinuria in CKD. Clin J Am Soc Nephrol 13:342–353

    Google Scholar 

  94. Tofte N, Suvitaival T, Trost K, Mattila IM, Theilade S, Winther SA, Ahluwalia TS, Frimodt-Moller M, Legido-Quigley C, Rossing P (2019) Metabolomic assessment reveals alteration in polyols and branched chain amino acids associated with present and future renal impairment in a discovery cohort of 637 persons with type 1 diabetes. Front Endocrinol (Lausanne) 10:818

    Google Scholar 

  95. Tofte N, Suvitaival T, Ahonen L, Winther SA, Theilade S, Frimodt-Moller M, Ahluwalia TS, Rossing P (2019) Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes. Sci Rep 9(1):16398

    PubMed Central  PubMed  Google Scholar 

  96. Rodriguez-Ortiz ME, Pontillo C, Rodriguez M, Zurbig P, Mischak H, Ortiz A (2018) Novel urinary biomarkers for improved prediction of progressive EGFR loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci Rep 8(1):15940

    PubMed Central  PubMed  Google Scholar 

  97. Chen L, Cheng CY, Choi H, Ikram MK, Sabanayagam C, Tan GS, Tian D, Zhang L, Venkatesan G, Tai ES et al (2016) Plasma metabonomic profiling of diabetic retinopathy. Diabetes 65(4):1099–1108

    CAS  PubMed  Google Scholar 

  98. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11(10):577–591

    CAS  PubMed  Google Scholar 

  99. Lassenius MI, Fogarty CL, Blaut M, Haimila K, Riittinen L, Paju A, Kirveskari J, Jarvela J, Ahola AJ, Gordin D et al (2017) Intestinal alkaline phosphatase at the crossroad of intestinal health and disease—a putative role in type 1 diabetes. J Intern Med 281(6):586–600

    CAS  PubMed  Google Scholar 

  100. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U (2014) Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 55(3):561–572

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J et al (2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21(1):37–46

    CAS  PubMed  Google Scholar 

  102. Rossing K, Mischak H, Parving HH, Christensen PK, Walden M, Hillmann M, Kaiser T (2005) Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int 68(1):193–205

    CAS  PubMed  Google Scholar 

  103. Andersen S, Mischak H, Zurbig P, Parving HH, Rossing P (2010) Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria. BMC Nephrol 11:29

    PubMed Central  PubMed  Google Scholar 

  104. Niewczas MA, Pavkov ME, Skupien J, Smiles A, Md Dom ZI, Wilson JM, Park J, Nair V, Schlafly A, Saulnier PJ et al (2019) A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med 25(5):805–813

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Lehto M, Groop PH (2018) The gut-kidney axis: putative interconnections between gastrointestinal and renal disorders. Front Endocrinol (Lausanne) 9:553

    Google Scholar 

  106. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9(3):294–299

    CAS  PubMed  Google Scholar 

  107. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ (2003) Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52(8):2110–2120

    CAS  PubMed  Google Scholar 

  108. Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleefstra N, Slingerland RJ, Mijnhout GS, Bilo HJ, Gans RO, Navis GJ et al (2010) A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care 33(7):1598–1601

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Raval AD, Thakker D, Rangoonwala AN, Gor D, Walia R (2015) Vitamin B and its derivatives for diabetic kidney disease. Cochrane Database Syst Rev 1:CD009403

    PubMed  Google Scholar 

  110. Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW (2005) The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 28(11):2686–2690

    CAS  PubMed  Google Scholar 

  111. Iso K, Tada H, Kuboki K, Inokuchi T (2001) Long-term effect of epalrestat, an aldose reductase inhibitor, on the development of incipient diabetic nephropathy in Type 2 diabetic patients. J Diabetes Complicat 15(5):241–244

    CAS  Google Scholar 

  112. Critselis E, Vlahou A, Stel VS, Morton RL (2017) Cost-effectiveness of screening type 2 diabetes patients for chronic kidney disease progression with the CKD273 urinary peptide classifier as compared to urinary albumin excretion. Nephrol Dial Transpl 33:441–449

    Google Scholar 

  113. Persson F, Lindhardt M, Rossing P, Parving HH (2016) Prevention of microalbuminuria using early intervention with renin-angiotensin system inhibitors in patients with type 2 diabetes: a systematic review. J Renin Angiotensin Aldosterone Syst 17(3)

  114. Cherney D, Perkins BA, Lytvyn Y, Heerspink H, Rodriguez-Ortiz ME, Mischak H (2017) The effect of sodium/glucose cotransporter 2 (SGLT2) inhibition on the urinary proteome. PLoS One 12(10):e0186910. https://doi.org/10.1371/journal.pone.0186910.eCollection2017

    Article  PubMed Central  PubMed  Google Scholar 

  115. Pena MJ, Lambers Heerspink HJ, Hellemons ME, Friedrich T, Dallmann G, Lajer M, Bakker SJ, Gansevoort RT, Rossing P, de Zeeuw D et al (2014) Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabetic Med: J Br Diabetic Assoc 31(9):1138–1147

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Novo Nordisk Foundation (grant number NNF14OC0013659 PROTON Personalising treatment of diabetic kidney disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rossing.

Ethics declarations

Conflict of interest

P.R. is on the Steering Committee of the following clinical trials: CADA-DIA (Bayer), Fidelio (Bayer) Figaro (Bayer), DAPA-CKD (Astra Zeneca), and FLOW (Novo-Nordisk); The Steno Diabetes Center Copenhagen has received fees for consultancy and/or speaking from Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Gilead, Eli Lilly, Mundi, Novo Nordisk and Sanofi Aventis. F.P. has served as a consultant, on advisory boards or as an educator for Astra Zeneca, Novo Nordisk, Sanofi, Mundipharma, MSD, Boehringer Ingelheim, Novartis, and Amgen, and has received research grants to the Steno Diabetes Center Copenhagen from Novo Nordisk, Amgen, and Astra Zeneca N.T. declares no conflicts.

Ethical standards

There are no ethical issues related to this review as it only includes previously published papers.

Research involving human Participants and/or animals

This is a review so no participants or animals were investigated.

Informed consent

Not relevant as this is a review and no participants were investigated.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tofte, N., Persson, F. & Rossing, P. Omics research in diabetic kidney disease: new biomarker dimensions and new understandings?. J Nephrol 33, 931–948 (2020). https://doi.org/10.1007/s40620-020-00759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00759-4

Keywords

Navigation