Skip to main content

Advertisement

Log in

Markers for the progression of IgA nephropathy

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

We have summarized the latest findings on markers for progression of immunoglobulin A (IgA) nephropathy (IgAN), the most common primary glomerulonephritis with a high prevalence among end-stage renal disease (ESRD) patients. The clinical predictors of renal outcome in IgAN nephropathy, such as proteinuria, hypertension, and decreased estimated glomerular filtration rate (eGFR) at the time of the diagnosis, are well known. The Oxford classification of IgAN identified four types of histological lesions (known as the MEST score) associated with the development of ESRD and/or a 50 % reduction in eGFR. In addition, the role of genetic risk factors associated with IgAN is being elucidated by genome-wide association studies, with multiple risk alleles described. Recently, biomarkers in serum (galactose-deficient IgA1, IgA/IgG autoantibodies against galactose-deficient IgA1, and soluble CD 89-IgA complexes) and urine (soluble transferrin receptor, interleukin-6/epidermal growth factor ratio, fractalkine, laminin G-like 3 peptide, κ light chains, and mannan-binding lectin) have been identified. Some of these biomarkers may represent candidates for the development of noninvasive diagnostic tests, that would be useful for detection of subclinical disease activity, monitoring disease progression, assessment of treatment, and at the same time circumventing the complications associated with renal biopsies. These advances, along with future disease-specific therapy, will be helpful in improving the treatment effectiveness, prognosis, and the quality of life in connection with IgAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moriyama T, Tanaka K, Iwasaki C et al (2014) Prognosis in IgA nephropathy: 30-year analysis of 1012 patients at a single center in Japan. PLoS One 9:e91756

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wyatt RJ, Julian BA (2013) IgA nephropathy. N Engl J Med 368:2402–2414

    Article  CAS  PubMed  Google Scholar 

  3. Cattran DC, Coppo R, Cook HT et al (2009) Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76:534–545

    Article  PubMed  Google Scholar 

  4. Coppo R, Troyanov S, Camilla R et al (2010) The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int 77:921–927

    Article  CAS  PubMed  Google Scholar 

  5. Feehally J, Floege J (2007) IgA nephropathy and Henoch-Schönlein nephritis. In: Feehally J, Floege J, Johnson RJ (ed) Comprehensive clinical nephrology, 3rd edn. Mosby, Philadelphia, pp 253–264

    Google Scholar 

  6. Kiryluk K, Li Y, Sanna-Cherchi S et al (2012) Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8:e1002765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kiryluk K, Li Y, Scolari F et al (2014) Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46:1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomana M, Matousovic K, Julian BA et al (1997) Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 52:509–516

    Article  CAS  PubMed  Google Scholar 

  9. Tomana M, Novak J, Julian BA et al (1999) Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 104:73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Novak J, Raskova Kafkova L, Suzuki H et al (2011) IgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured human mesangial cells. Nephrol Dial Transplant 26:3451–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maillard N, Wyatt RJ, Julian BA et al (2015) Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol 26:1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmitt R, Stahl AL, Al Olin et al (2014) The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy. J Immunol 193:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daha MR, van Kooten C (2016) Role of complement in IgA nephropathy. J Nephrol 29:1–4

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki H, Ohsawa I, Kodama F et al (2013) Fluctuation of serum C3 levels reflects disease activity and metabolic background in patients with IgA nephropathy. J Nephrol 26:708–715

    Article  CAS  PubMed  Google Scholar 

  15. Lai KN, Leung JC, Chan LY et al (2008) Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol 294:F945–F955

    Article  CAS  PubMed  Google Scholar 

  16. Maixnerova D, Bauerova L, Skibova J et al (2012) The retrospective analysis of 343 Czech patients with IgA nephropathy—one centre experience. Nephrol Dial Transplant 27:1492–1498

    Article  CAS  PubMed  Google Scholar 

  17. Reich HN, Troyanov S, Scholey JW et al (2007) Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol 18:3177–3183

    Article  CAS  PubMed  Google Scholar 

  18. Alamartine E, Sauron C, Laurent B et al (2011) The use of Oxford classification of IgA nephropathy to predict renal survival. Clin J Am Soc Nephrol 6:2384–2388

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berthoux F, Mohey H, Laurent B et al (2011) Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol 22:752–761

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barbour SJ, Cattran DC, Espino-Hernandez G et al (2015) Identifying the ideal metric of proteinuria as a predictor of renal outcome in idiopathic glomerulonephritis. Kidney Int 88:1392–1401

    Article  CAS  PubMed  Google Scholar 

  21. Barbour SJ, Reich HN (2012) Risk stratification of patients with IgA nephropathy. Am J Kidney Dis 59:865–873

    Article  PubMed  Google Scholar 

  22. Coppo R, D’Amico G (2005) Factors predicting progression of IgA nephropathies. J Nephrol 18:503–512

    PubMed  Google Scholar 

  23. Kaartinen K, Syrjanen J, Porsti I et al (2008) Inflammatory markers and the progression of IgA glomerulonephritis. Nephrol Dial Transplant 23:1285–1290

    Article  CAS  PubMed  Google Scholar 

  24. Roberts IS, Cook HT et al (2009) The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76:546–556

    Article  PubMed  Google Scholar 

  25. Barbour SJ, Espino-Hernandez G, Reich HN et al (2016) The MEST score provides earlier risk prediction in IgA nephropathy. Kidney Int 89:1671–1675

    Google Scholar 

  26. Coppo R, Troyanov S, Bellur S et al (2014) Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int 86:828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bellur SS, Troyanov S, Cook HT et al (2011) Immunostaining findings in IgA nephropathy: correlation with histology and clinical outcome in the Oxford classification patient cohort. Nephrol Dial Transplant 26:2533–2536

    Article  PubMed  Google Scholar 

  28. Wada Y, Ogata H, Takeshige Y et al (2013) Clinical significance of IgG deposition in the glomerular mesangial area in patients with IgA nephropathy. Clin Exp Nephrol 17:73–82

    Article  CAS  PubMed  Google Scholar 

  29. Yanagawa H, Suzuki H, Suzuki Y et al (2014) A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS ONE 9:e98081

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nakata J, Suzuki Y, Suzuki H et al (2014) Changes in nephritogenic serum galactose-deficient IgA1 in IgA nephropathy following tonsillectomy and steroid therapy. PLoS One 9:e89707

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suzuki H, Raska M, Yamada K et al (2014) Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem 289:5330–5339

    Article  CAS  PubMed  Google Scholar 

  32. Moldoveanu Z, Wyatt RJ, Lee J et al (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:1148–1154

    Article  CAS  PubMed  Google Scholar 

  33. Hastings MC, Moldoveanu Z, Julian BA et al (2010) Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol 5:2069–2074

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao N, Hou P, Lv J et al (2012) The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 82:790–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suzuki H, Kiryluk K, Novak J et al (2011) The pathophysiology of IgA nephropathy. J Am Soc Nephrol 22:1795–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Launay P, Grossetête B, Arcos-Fajardo M et al (2000) Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. J Exp Med 191:1999–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berthelot L, Papista C, Maciel TT et al (2012) Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med 209:793–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vuong MT, Hahn-Zoric M, Lundberg S et al (2010) Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int 78:1281–1287

    Article  CAS  PubMed  Google Scholar 

  39. Lechner SM, Papista C, Chemouny JM et al (2016) Role of IgA receptors in the pathogenesis of IgA nephropathy. J Nephrol 29:5–11

    Article  CAS  PubMed  Google Scholar 

  40. Delanghe SE, Speeckaert MM, Segers H et al (2013) Soluble transferrin receptor in urine, a new biomarker for IgA nephropathy and Henoch-Schönlein purpura nephritis. Clin Biochem 46:591–597

    Article  CAS  PubMed  Google Scholar 

  41. Peters HP, Waanders F, Meijer E et al (2011) High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy. Nephrol Dial Transplant 26:3581–3588

    Article  CAS  PubMed  Google Scholar 

  42. Peters HP, van den Brand JA, Wetzels JF (2009) Urinary excretion of low-molecular-weight proteins as prognostic markers in IgA nephropathy. Neth J Med 67:54–61

    CAS  PubMed  Google Scholar 

  43. Shimozato S, Hiki Y, Odani H, Takahashi K, Yamamoto K, Sugiyama S (2008) Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy. Nephrol Dial Transplant 23(6):1931–1939. doi:10.1093/ndt/gfm913

    Article  CAS  PubMed  Google Scholar 

  44. Yasutake J, Suzuki Y, Suzuki H et al (2015) Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy. Nephrol Dial Transplant 30:1315–1321

    Article  PubMed  PubMed Central  Google Scholar 

  45. Berthoux F, Suzuki H, Thibaudin L et al (2012) Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 23:1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J (2009) Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119(6):1668–1677. doi:10.1172/JCI38468

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hastings MC, Moldoveanu Z, Suzuki H et al (2013) Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opin Med Diagn 7:615–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caliskan Y, Kiryluk K (2014) Novel biomarkers in glomerular disease. Adv Chronic Kidney Dis 21:205–216

    Article  PubMed  PubMed Central  Google Scholar 

  49. Szeto CC, Li PK (2014) Micro RNAs in IgA nephropathy. Nat Rev Nephrol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  50. Serino G, Sallustio F, Cox SN et al (2012) Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol 23:814–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang N, Bu R, Duan Z et al (2015) Profiling and initial validation of urinary microRNAs as biomarkers in IgA nephropathy. PeerJ 3:e990. doi:10.7717/peerj.990

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xing Li-Na, Wang H, Yin PH et al (2014) Reduced mir-29b-3p expression up-regulate CDK6 and contributes to IgA nephropathy. Int J Clin Exp Med 7:5275–5281

    PubMed  PubMed Central  Google Scholar 

  53. Bao H, Chen H, Zhu X et al (2014) MiR 223 downregulation promotes glomerular endothelial cell activation by upregulating importin α4 and α5 in IgA nephropathy. Kidney Int 85:624–635

    Article  CAS  PubMed  Google Scholar 

  54. Berthelot L, Robert T, Vuiblet V et al (2015) Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int 88:815–822

    Article  CAS  PubMed  Google Scholar 

  55. Xu PC, Wei L, Shang WY et al (2014) Urinary kidney injury molecule-1 is related to pathologic involvement in IgA nephropathy with normotension, normal renal function and mild proteinuria. BMC Nephrol 7:107

    Article  Google Scholar 

  56. Ranieri E, Gesualdo L, Petrarulo F et al (1996) Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int 50:1990–2001

    Article  CAS  PubMed  Google Scholar 

  57. Torres DD, Rossini M, Manno C et al (2008) The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. Kidney Int 73:327–333

    Article  CAS  PubMed  Google Scholar 

  58. Aizawa T, Imaizumi T, Tsuruga K et al (2013) Urinary fractalkine and monocyte chemoattractant protein-1 as possible predictors of disease activity of childhood glomerulonephritis. Tohoku J Exp Med 231:265–270

    Article  CAS  PubMed  Google Scholar 

  59. Rocchetti MT, Papale M, d’Apollo AM et al (2013) Association of urinary laminin G-like 3 and free κ light chains with disease activity and histological injury in IgA nephropathy. Clin J Am Soc Nephrol 8:1115–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu J, Wang N, Wang J et al (2010) Identification of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Commun Mass Spectrom 24:1971–1978

    Article  CAS  PubMed  Google Scholar 

  61. Candiano G, Musante L, Bruschi M et al (2006) Repetitive fragmentation products of albumin and α1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol 17:3139–3148

    Article  CAS  PubMed  Google Scholar 

  62. Asao R, Asanuma K, Kodama F et al (2012) Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy. Clin J Am Soc Nephrol 7:1385–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Good DM, Zürbig P, Argiles A et al (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9:2424–2437

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu LL, Jiang Y, Wang LN et al (2012) Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig)A nephropathy. Clin Exp Immunol 169:148–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sogabe A, Uto H, Kanmura S et al (2013) Correlation of serum levels of complement C4a desArg with pathologically estimated severity of glomerular lesions and mesangial hypercellularity scores in patients with IgA nephropathy. Int J Mol Med 32:307–314

    CAS  PubMed  Google Scholar 

  66. Gharavi AG, Kiryluk K, Choi M et al (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kiryluk K, Li Y, Scolari F et al (2014) Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46(11):1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li M, Foo JN, Wang JQ et al (2015) Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun 6:7270. doi:10.1038/ncomms8270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors CR, QB, and JN have been supported in part by Grants DK106341, DK079337, DK078244, DK082753, GM098539 from the National Institutes of Health and a gift from the IGA Nephropathy Foundation of America and the authors DM and VT by Grant LH15168 from the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dita Maixnerova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to writing this manuscript.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

D. Maixnerova, C. Reily and Q. Bian contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maixnerova, D., Reily, C., Bian, Q. et al. Markers for the progression of IgA nephropathy. J Nephrol 29, 535–541 (2016). https://doi.org/10.1007/s40620-016-0299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-016-0299-0

Keywords

Navigation