Skip to main content

Advertisement

Log in

SIX1 gene: absence of mutations in children with isolated congenital anomalies of kidney and urinary tract

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Mutations in human SIX1 gene cause branchiootorenal or branchiootic syndrome. Six1 deficient mice exhibit uni- or bilateral renal hypoplasia or kidney agenesis. Furthermore a lack of Six1 gene in the ureter leads to hydroureter and hydronephrosis. These murine malformations resemble human kidney and urinary tract congenital anomalies (CAKUT), a group of diseases with a diverse anatomical spectrum which includes duplex collecting system as much as urethra kidney and ureteropelvic anomalies. Our study focuses on whether mutations or deletion of this gene may be associated with nonsyndromic CAKUT.

Methods

Fifty unrelated patients (13–21 years) with nonsyndromic CAKUT were retrospectively recruited for SIX1 sequence variations analysis, and compared to three subjects without malformative nephrouropathies (controls). SIX1 coding sequence was screened by high resolution melt analysis (HRMA) and by Sanger direct sequencing. A quantitative comparative real-time polymerase chain reaction (PCR) was later performed in order to detect the presence of SIX1 gene deletion.

Results

We did not find significant differences in the HRMA melting curves for each of the SIX1 coding exons between patients and controls, as also confirmed by Sanger direct sequencing. Moreover quantitative comparative real-time PCR for SIX1 and data normalization excluded total SIX1 gene deletion in our patients.

Conclusions

We did not find sequence variations in SIX1 coding regions or complete gene deletion in our CAKUT population. These results suggest that alterations in these sequences are unlikely to be a major cause of nonsyndromic CAKUT. Nevertheless, further studies are necessary to understand if altered SIX1 expression may play a role in human development of kidney and urinary tract congenital anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ohto H, Takizawa T, Saito T, Kobayashi M, Ikeda K, Kawakami K (1998) Tissue and developmental distribution of six family gene products. Int J Dev Biol 42(2):141–148

    CAS  PubMed  Google Scholar 

  2. Noguchi Y, Ito T, Nishio A, Honda K, Kitamura K (2011) Audiovestibular findings in a branchio-oto syndrome patient with a SIX1 mutation. Acta Otolaryngol 131(4):413–418

    Article  CAS  PubMed  Google Scholar 

  3. Nie X, Xu J, El-Hashash A, Xu PX (2011) Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev Biol 352(1):141–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nie X, Sun J, Gordon RE, Cai CL, Xu PX (2010) SIX1 acts synergistically with TBX18 in mediating ureteral smooth muscle formation. Development 137(5):755–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130(14):3085–3094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529 (Review)

    Article  CAS  PubMed  Google Scholar 

  7. Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74(7):402–421 Review

    Article  CAS  PubMed  Google Scholar 

  8. Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK (2004) Branching morphogenesis and kidney disease. Development 131(7):1449–1462 (Review)

    Article  CAS  PubMed  Google Scholar 

  9. Nakanishi K, Yoshikawa N (2003) Genetic disorders of human congenital anomalies of the kidney and urinary tract (CAKUT). Pediatr Int 45(5):610–616

    Article  CAS  PubMed  Google Scholar 

  10. Ruf RG, Xu PX, Silvius D et al (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1–SIX1–DNA complexes. Proc Natl Acad Sci USA 101(21):8090–8095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Krug P, Morinière V, Marlin S et al (2011) Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations. Hum Mutat 32(2):183–190

    Article  CAS  PubMed  Google Scholar 

  12. Izzedine H, Tankere F, Launay-Vacher V, Deray G (2004) Ear and kidney syndromes: molecular versus clinical approach. Kidney Int 65(2):369–385 (Review)

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi H, Kawakami K, Asashima M, Nishinakamura R (2007) Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124(4):290–303

    Article  CAS  PubMed  Google Scholar 

  14. Dinkel E, Ertel M, Dittrich M, Peters H, Berres M, Schulte-Wissermann H (1985) Kidney size in childhood. Sonographical growth charts for kidney length and volume. Pediatr Radiol 15(1):38–43

    Article  CAS  PubMed  Google Scholar 

  15. Han BK, Babcock DS (1985) Sonographic measurements and appearance of normal kidneys in children. Am J Roentgenol 145(3):611–616

    Article  CAS  Google Scholar 

  16. Harmon DL, Shields DC, Woodside JV et al (1999) Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 17(4):298–309

    Article  CAS  PubMed  Google Scholar 

  17. Yu J, McMahon AP, Valerius MT (2004) Recent genetic studies of mouse kidney development. Curr Opin Genet Dev 14(5):550–557

    Article  CAS  PubMed  Google Scholar 

  18. Kochhar A, Orten DJ, Sorensen JL et al (2008) SIX1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR. Hum Mutat 29(4):565–577

    Article  PubMed  Google Scholar 

  19. Ruf RG, Berkman J, Wolf MT et al (2003) A gene locus for branchio-otic syndrome maps to chromosome 14q21.3-q24.3. J Med Genet 40(7):515–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sanggaard KM, Rendtorff ND, Kjaer KW et al (2007) Branchio-oto-renal syndrome: detection of EYA1 and SIX1 mutations in five out of six Danish families by combining linkage, MLPA and sequencing analyses. Eur J Hum Genet 15(11):1121–1131

    Article  CAS  PubMed  Google Scholar 

  21. Ozaki H, Watanabe Y, Ikeda K, Kawakami K (2002) Impaired interactions between mouse Eya1 harboring mutations found in patients with branchio-oto-renal syndrome and Six, Dach, and G proteins. J Hum Genet 47(3):107–116

    Article  CAS  PubMed  Google Scholar 

  22. Patrick AN, Schiemann BJ, Yang K, Zhao R, Ford HL (2009) Biochemical and functional characterization of six SIX1 branchio-oto-renal syndrome mutations. J Biol Chem 284(31):20781–20790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Vivante A, Mark-Danieli M, Davidovits M et al (2013) Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical WNT signaling. J Am Soc Nephrol 24(4):550–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Saisawat P, Tasic V, Vega-Warner V et al (2012) Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int 81(2):196–200

    Article  CAS  PubMed  Google Scholar 

  25. Saisawat P, Kohl S, Hilger AC et al (2013) Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. doi:10.1038/ki.2013.417

  26. Sanna-Cherchi S, Sampogna RV, Papeta N et al (2013) Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med 369(7):621–629

    Article  CAS  PubMed  Google Scholar 

  27. Weber S, Moriniere V, Knüppel T et al (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17(10):2864–2870

    Article  CAS  PubMed  Google Scholar 

  28. Hwang DY, Dworschak GC, Kohl S et al (2014) Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. doi:10.1038/ki.2013.508

  29. Wu W, Ren Z, Liu H et al (2013) Core promoter analysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation. Gene 529(2):238–244

    Article  CAS  PubMed  Google Scholar 

  30. de Vooght KM, van Wijk R, van Solinge WW (2009) Management of gene promoter mutations in molecular diagnostics. Clin Chem 55(4):698–708. doi:10.1373/clinchem.2008.120931

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Artifoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negrisolo, S., Centi, S., Benetti, E. et al. SIX1 gene: absence of mutations in children with isolated congenital anomalies of kidney and urinary tract. J Nephrol 27, 667–671 (2014). https://doi.org/10.1007/s40620-014-0112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-014-0112-x

Keywords

Navigation