Skip to main content
Log in

Asprosin: its function as a novel endocrine factor in metabolic-related diseases

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background and purpose

Asprosin was discovered as a new endocrine hormone originating from fibrillin-1 cleavage that plays a crucial role in various metabolic-related diseases, such as obesity, nonalcoholic fatty liver disease (NAFLD), diabetes, polycystic ovary syndrome (PCOS), and cardiovascular diseases. The purpose of this review is to describe the recent advancements of asprosin.

Method

Narrative review.

Result

This comprehensive review explores its tissue-specific functions, focusing on white adipose tissue, liver, hypothalamus, testis, ovary, heart, pancreas, skeletal muscle, and kidney.

Conclusion

Asprosin is a multifaceted protein with tissue-specific roles in various physiological and pathological processes. Further research is needed to fully understand the mechanisms and potential of asprosin as a therapeutic target. These insights could provide new directions for treatments targeting metabolic-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F et al (2016) Asprosin, a fasting-induced glucogenic protein hormone. Cell 165(3):566–579. https://doi.org/10.1016/j.cell.2016.02.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mazur-Bialy AI (2021) Asprosin—a fasting-induced, glucogenic, and orexigenic adipokine as a new promising player will it be a new factor in the treatment of obesity, diabetes, or infertility? A review of the literature. Nutrients 13(2):620. https://doi.org/10.3390/nu13020620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farrag M, Ait Eldjoudi D, Gonzalez-Rodriguez M, Cordero-Barreal A, Ruiz-Fernandez C, Capuozzo M et al (2022) Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne) 13:1101091. https://doi.org/10.3389/fendo.2022.1101091

    Article  PubMed  Google Scholar 

  4. Naiemian S, Naeemipour M, Zarei M, Lari Najafi M, Gohari A, Behroozikhah MR et al (2020) Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol Metab Syndr. https://doi.org/10.1186/s13098-020-00564-w

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang L, Chen C, Zhou N, Fu Y, Cheng X (2019) Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride. Clin Chim Acta 489:183–188. https://doi.org/10.1016/j.cca.2017.10.034

    Article  CAS  PubMed  Google Scholar 

  6. Wang R, Lin P, Sun H, Hu W (2021) Increased serum asprosin is correlated with diabetic nephropathy. Diabetol Metab Syndr 13(1):51. https://doi.org/10.1186/s13098-021-00668-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diao H, Li X, Xu Y, Xing X, Pang S (2023) Asprosin, a novel glucogenic adipokine implicated in type 2 diabetes mellitus. J Diabet Complicat 37(11):108614. https://doi.org/10.1016/j.jdiacomp.2023.108614

    Article  CAS  Google Scholar 

  8. Duerrschmid C, He Y, Wang C, Li C, Bournat JC, Romere C et al (2017) Asprosin is a centrally acting orexigenic hormone. Nat Med 23(12):1444–1453. https://doi.org/10.1038/nm.4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu Y, Xu Y, Zheng Y, Kang Q, Lou Z, Liu Q et al (2021) Increased plasma asprosin levels in patients with drug-naive anorexia nervosa. Eat Weight Disord 26(1):313–321. https://doi.org/10.1007/s40519-020-00845-3

    Article  PubMed  Google Scholar 

  10. Cantay H, Binnetoglu K, Gul HF, Bingol SA (2022) Investigation of serum and adipose tissue levels of asprosin in patients with severe obesity undergoing sleeve gastrectomy. Obesity 30(8):1639–1646. https://doi.org/10.1002/oby.23471

    Article  CAS  PubMed  Google Scholar 

  11. Wang CY, Lin TA, Liu KH, Liao CH, Liu YY, Wu VC et al (2019) Serum asprosin levels and bariatric surgery outcomes in obese adults. Int J Obes 43(5):1019–1025. https://doi.org/10.1038/s41366-018-0248-1

    Article  CAS  Google Scholar 

  12. Wiecek M, Szymura J, Sproull J, Szygula Z (2019) Decreased blood asprosin in hyperglycemic menopausal women as a result of whole-body cryotherapy regardless of metabolic syndrome. J Clin Med. https://doi.org/10.3390/jcm8091428

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gozel N, Kilinc F (2021) Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol 72(1):37–43. https://doi.org/10.5603/EP.a2020.0059

    Article  CAS  PubMed  Google Scholar 

  14. Long W, Xie X, Du C, Zhao Y, Zhang C, Zhan D et al (2019) Decreased circulating levels of asprosin in obese children. Horm Res Paediatr 91(4):271–277. https://doi.org/10.1159/000500523

    Article  CAS  PubMed  Google Scholar 

  15. Corica D, Aversa T, Currò M, Tropeano A, Pepe G, Alibrandi A et al (2021) Asprosin serum levels and glucose homeostasis in children with obesity. Cytokine 142:155477. https://doi.org/10.1016/j.cyto.2021.155477

    Article  CAS  PubMed  Google Scholar 

  16. Sunnetci Silistre E, Hatipogl HU (2020) Increased serum circulating asprosin levels in children with obesity. Pediatr Int 62(4):467–476. https://doi.org/10.1111/ped.14176

    Article  CAS  PubMed  Google Scholar 

  17. Wang M, Yin C, Wang L, Liu Y, Li H, Li M et al (2019) Serum asprosin concentrations are increased and associated with insulin resistance in children with obesity. Ann Nutr Metab 75(4):205–212. https://doi.org/10.1159/000503808

    Article  CAS  PubMed  Google Scholar 

  18. Shabir K, Brown JE, Afzal I, Gharanei S, Weickert MO, Barber TM et al (2021) Asprosin, a novel pleiotropic adipokine implicated in fasting and obesity-related cardio-metabolic disease: comprehensive review of preclinical and clinical evidence. Cytokine Growth Factor Rev 60:120–132. https://doi.org/10.1016/j.cytogfr.2021.05.002

    Article  CAS  PubMed  Google Scholar 

  19. Hekim MG, Kelestemur MM, Bulmus FG, Bilgin B, Bulut F, Gokdere E et al (2021) Asprosin, a novel glucogenic adipokine: a potential therapeutic implication in diabetes mellitus. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2021.1894178

    Article  PubMed  Google Scholar 

  20. Ke F, Xue G, Jiang X, Li F, Lai X, Zhang M et al (2020) Combination of asprosin and adiponectin as a novel marker for diagnosing non-alcoholic fatty liver disease. Cytokine 134:155184. https://doi.org/10.1016/j.cyto.2020.155184

    Article  CAS  PubMed  Google Scholar 

  21. Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA (2023) Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 138(1):106979. https://doi.org/10.1016/j.ymgme.2022.106979

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z, Zhu L, Wang Z, Hua N, Hu S, Chen Y (2023) Can the new adipokine asprosin be a metabolic troublemaker for cardiovascular diseases? State Art Rev Prog Lipid Res 91:101240. https://doi.org/10.1016/j.plipres.2023.101240

    Article  CAS  Google Scholar 

  23. Mishra I, Duerrschmid C, Ku Z, He Y, Xie W, Silva ES et al (2021) Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. Elife. https://doi.org/10.7554/eLife.63784

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sakai LY, Keene DR, Renard M, De Backer J (2016) FBN1: the disease-causing gene for marfan syndrome and other genetic disorders. Gene 591(1):279–291. https://doi.org/10.1016/j.gene.2016.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Milewicz DM, Grossfield J, Cao SN, Kielty C, Covitz W, Jewett T (1995) A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest 95(5):2373–2378. https://doi.org/10.1172/JCI117930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reinhardt DP, Gambee JE, Ono RN, Bachinger HP, Sakai LY (2000) Initial steps in assembly of microfibrils formation of disulfide-cross-linked multimers containing fibrillin-1. J Biol Chem 275(3):2205–2210. https://doi.org/10.1074/jbc.275.3.2205

    Article  CAS  PubMed  Google Scholar 

  27. Jensen SA, Aspinall G, Handford PA (2014) C-terminal propeptide is required for fibrillin-1 secretion and blocks premature assembly through linkage to domains cbEGF41-43. Proc Natl Acad Sci U S A 111(28):10155–10160. https://doi.org/10.1073/pnas.1401697111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lonnqvist L, Reinhardt D, Sakai L, Peltonen L (1998) Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum Mol Genet 7(13):2039–2044. https://doi.org/10.1093/hmg/7.13.2039

    Article  CAS  PubMed  Google Scholar 

  29. Lee SS, Knott V, Jovanovic J, Harlos K, Grimes JM, Choulier L et al (2004) Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure 12(4):717–729. https://doi.org/10.1016/j.str.2004.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loeys B, Nuytinck L, Delvaux I, De Bie S, De Paepe A (2001) Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch Intern Med 161(20):2447–2454. https://doi.org/10.1001/archinte.161.20.2447

    Article  CAS  PubMed  Google Scholar 

  31. Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V et al (2010) Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3000488

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garg A, Xing C (2014) De novo heterozygous FBN1 mutations in the extreme C-terminal region cause progeroid fibrillinopathy. Am J Med Genet A 164A(5):1341–1345. https://doi.org/10.1002/ajmg.a.36449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Passarge E, Robinson PN, Graul-Neumann LM (2016) Marfanoid-progeroid-lipodystrophy syndrome: a newly recognized fibrillinopathy. Eur J Hum Genet 24(9):1244–1247. https://doi.org/10.1038/ejhg.2016.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Zhu Z, Zhai W, Bi Y, Yin Y, Zhang W (2021) Expression and purification of asprosin in Pichia pastoris and investigation of its increase glucose uptake activity in skeletal muscle through activation of AMPK. Enzyme Microb Technol 144:109737. https://doi.org/10.1016/j.enzmictec.2020.109737

    Article  CAS  PubMed  Google Scholar 

  35. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom 13(2):397–406. https://doi.org/10.1074/mcp.M113.035600

    Article  CAS  Google Scholar 

  36. Kerslake R, Hall M, Vagnarelli P, Jeyaneethi J, Randeva HS, Pados G et al (2021) A pancancer overview of FBN1, asprosin and its cognate receptor OR4M1 with detailed expression profiling in ovarian cancer. Oncol Lett 22(3):650. https://doi.org/10.3892/ol.2021.12911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee T, Yun S, Jeong JH, Jung TW (2019) Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol 486:96–104. https://doi.org/10.1016/j.mce.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  38. Li E, Shan H, Chen L, Long A, Zhang Y, Liu Y et al (2019) OLFR734 mediates glucose metabolism as a receptor of asprosin. Cell Metab 30(2):319–28 e8. https://doi.org/10.1016/j.cmet.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  39. Tatematsu M, Yoshida R, Morioka Y, Ishii N, Funami K, Watanabe A et al (2016) Raftlin controls lipopolysaccharide-induced TLR4 internalization and TICAM-1 signaling in a cell type-specific manner. J Immunol 196(9):3865–3876. https://doi.org/10.4049/jimmunol.1501734

    Article  CAS  PubMed  Google Scholar 

  40. da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ (2001) Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex transfer from CD14 to TLR4 and MD-2. J Biol Chem 276(24):21129–21135. https://doi.org/10.1074/jbc.M009164200

    Article  PubMed  Google Scholar 

  41. Ugur K, Aydin S (2019) Saliva and blood asprosin hormone concentration associated with obesity. Int J Endocrinol 2019:2521096. https://doi.org/10.1155/2019/2521096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alan M, Gurlek B, Yilmaz A, Aksit M, Aslanipour B, Gulhan I et al (2019) Asprosin: a novel peptide hormone related to insulin resistance in women with polycystic ovary syndrome. Gynecol Endocrinol 35(3):220–223. https://doi.org/10.1080/09513590.2018.1512967

    Article  CAS  PubMed  Google Scholar 

  43. Luis C, Fernandes R, Soares R, von Hafe P (2020) A state of the art review on the novel mediator asprosin in the metabolic syndrome. Porto Biomed J. https://doi.org/10.1097/j.pbj.0000000000000108

    Article  PubMed  PubMed Central  Google Scholar 

  44. Scheja L, Heeren J (2019) The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 15(9):507–524. https://doi.org/10.1038/s41574-019-0230-6

    Article  CAS  PubMed  Google Scholar 

  45. Hong T, Li J-Y, Wang Y-D, Qi X-Y, Liao Z-Z, Bhadel P et al (2021) High serum asprosin levels are associated with presence of metabolic syndrome. Int J Endocrinol 2021:1–7. https://doi.org/10.1155/2021/6622129

    Article  CAS  Google Scholar 

  46. Ceylan HI, Saygin O, Ozel TU (2020) Assessment of acute aerobic exercise in the morning versus evening on asprosin, spexin, lipocalin-2, and insulin level in overweight/obese versus normal weight adult men. Chronobiol Int 37(8):1252–1268. https://doi.org/10.1080/07420528.2020.1792482

    Article  CAS  PubMed  Google Scholar 

  47. Mirr M, Braszak-Cymerman A, Ludziejewska A, Kregielska-Narozna M, Bogdanski P, Bryl W et al (2023) Serum asprosin correlates with indirect insulin resistance indices. Biomedicines. https://doi.org/10.3390/biomedicines11061568

    Article  PubMed  PubMed Central  Google Scholar 

  48. O’Neill B, Simha V, Kotha V, Garg A (2007) Body fat distribution and metabolic variables in patients with neonatal progeroid syndrome. Am J Med Genet A 143A(13):1421–1430. https://doi.org/10.1002/ajmg.a.31840

    Article  PubMed  Google Scholar 

  49. Miao Y, Qin H, Zhong Y, Huang K, Rao C (2021) Novel adipokine asprosin modulates browning and adipogenesis in white adipose tissue. J Endocrinol. https://doi.org/10.1530/joe-20-0503

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yin T, Chen S, Zeng G, Yuan W, Lu Y, Zhang Y et al (2022) Angiogenesis-browning interplay mediated by asprosin-knockout contributes to weight loss in mice with obesity. Int J Mol Sci. https://doi.org/10.3390/ijms232416166

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320(3):C375–C391. https://doi.org/10.1152/ajpcell.00379.2020

    Article  CAS  PubMed  Google Scholar 

  52. Mazur-Bialy AI (2023) Asprosin enhances cytokine production by a Co-culture of fully differentiated mature adipocytes and macrophages leading to the exacerbation of the condition typical of obesity-related inflammation. Int J Mol Sci. https://doi.org/10.3390/ijms24065745

    Article  PubMed  PubMed Central  Google Scholar 

  53. Trefts E, Gannon M, Wasserman DH (2017) The liver. Curr Biol 27(21):R1147–R1151. https://doi.org/10.1016/j.cub.2017.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu LJ, Kang YR, Xiao YF (2021) Increased asprosin is associated with non-alcoholic fatty liver disease in children with obesity. World J Pediatr 17(4):394–399. https://doi.org/10.1007/s12519-021-00444-x

    Article  CAS  PubMed  Google Scholar 

  55. Ertuna GN, Sahiner ES, Yilmaz FM, Ates I (2023) The role of irisin and asprosin level in the pathophysiology of prediabetes. Diabetes Res Clin Pract 199:110642. https://doi.org/10.1016/j.diabres.2023.110642

    Article  CAS  PubMed  Google Scholar 

  56. Nedeva IS, Assyov Y, Karamfilova V, Vodenicharov V, Gerganova A, Hristova J et al (2023) Circulating asprosin concentrations in patients with obesity and carbohydrate disturbances. Horm Metab Res 55(4):284–289. https://doi.org/10.1055/a-2033-6109

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Qu H, Xiong X, Qiu Y, Liao Y, Chen Y et al (2018) Plasma asprosin concentrations are increased in individuals with glucose dysregulation and correlated with insulin resistance and first-phase insulin secretion. Mediators Inflamm 2018:9471583. https://doi.org/10.1155/2018/9471583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang R, Lin P, Sun H, Hu W (2021) Increased serum asprosin is correlated with diabetic nephropathy. Diabetol Metab Syndr. https://doi.org/10.1186/s13098-021-00668-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang B, Lu J, Jiang Y, Feng Y (2023) Asprosin contributes to nonalcoholic fatty liver disease through regulating lipid accumulation and inflammatory response via AMPK signaling. Immun Inflamm Dis 11(8):e947. https://doi.org/10.1002/iid3.947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kocaman N, Kuloglu T (2020) Expression of asprosin in rat hepatic, renal, heart, gastric, testicular and brain tissues and its changes in a streptozotocin-induced diabetes mellitus model. Tissue Cell 66:101397. https://doi.org/10.1016/j.tice.2020.101397

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Long A, Chen L, Jia L, Wang Y (2020) The asprosin-OLFR734 module regulates appetitive behaviors. Cell Discov 6:19. https://doi.org/10.1038/s41421-020-0152-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mishra I, Xie WR, Bournat JC, He Y, Wang C, Silva ES et al (2022) Protein tyrosine phosphatase receptor delta serves as the orexigenic asprosin receptor. Cell Metab 34:549-63e8. https://doi.org/10.1016/j.cmet.2022.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dampney RA, Michelini LC, Li DP, Pan HL (2018) Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 315(5):H1200–H1214. https://doi.org/10.1152/ajpheart.00216.2018

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang XL, Wang JX, Chen JL, Hao WY, Xu WZ, Xu ZQ et al (2022) Asprosin in the paraventricular nucleus induces sympathetic activation and pressor responses via cAMP-dependent ROS production. Int J Mol Sci. https://doi.org/10.3390/ijms232012595

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wei F, Long A, Wang Y (2019) The asprosin-OLFR734 hormonal signaling axis modulates male fertility. Cell Discov 5:55. https://doi.org/10.1038/s41421-019-0122-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maurya S, Krishna A, Lal B, Singh A (2022) Asprosin promotes steroidogenesis and spermatogenesis with improved glucose metabolism in adult mice testis. Andrologia 54(11):e14579. https://doi.org/10.1111/and.14579

    Article  CAS  PubMed  Google Scholar 

  67. Sathoria P, Chuphal B, Rai U, Roy B (2023) Molecular cloning, characterization and 3D modelling of spotted snakehead fbn1 C-terminal region encoding asprosin and expression analysis of fbn1. Sci Rep 13(1):4470. https://doi.org/10.1038/s41598-023-31271-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deniz R, Yavuzkir S, Ugur K, Ustebay DU, Baykus Y, Ustebay S et al (2021) Subfatin and asprosin, two new metabolic players of polycystic ovary syndrome. J Obstet Gynaecol 41(2):279–284. https://doi.org/10.1080/01443615.2020.1758926

    Article  CAS  PubMed  Google Scholar 

  69. Li X, Liao M, Shen R, Zhang L, Hu H, Wu J et al (2018) Plasma asprosin levels are associated with glucose metabolism, lipid, and sex hormone profiles in females with metabolic-related diseases. Mediators Inflamm 2018:7375294. https://doi.org/10.1155/2018/7375294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perez-Lopez FR, Lopez-Baena MT, Perez-Roncero GR, Chedraui P, Varikasuvu SR, Garcia-Alfaro P (2023) Asprosin levels in women with and without the polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol 39(1):2152790. https://doi.org/10.1080/09513590.2022.2152790

    Article  CAS  PubMed  Google Scholar 

  71. Chang CL, Huang SY, Hsu YC, Chin TH, Soong YK (2019) The serum level of irisin, but not asprosin, is abnormal in polycystic ovary syndrome patients. Sci Rep 9(1):6447. https://doi.org/10.1038/s41598-019-42061-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maurya S, Singh A (2022) Asprosin modulates testicular functions during ageing in mice. Gen Comp Endocrinol 323–324:114036. https://doi.org/10.1016/j.ygcen.2022.114036

    Article  CAS  PubMed  Google Scholar 

  73. Keskin T, Erden Y, Tekin S (2021) Intracerebroventricular asprosin administration strongly stimulates hypothalamic-pituitary-testicular axis in rats. Mol Cell Endocrinol 538:111451. https://doi.org/10.1016/j.mce.2021.111451

    Article  CAS  PubMed  Google Scholar 

  74. Maylem ERS, Spicer LJ, Batalha I, Schutz LF (2021) Discovery of a possible role of asprosin in ovarian follicular function. J Mol Endocrinol 66(1):35–44. https://doi.org/10.1530/JME-20-0218

    Article  CAS  PubMed  Google Scholar 

  75. Maylem ERS, Spicer LJ, Atabay EP, Atabay EC, Batalha I, Schutz LF (2022) A potential role of fibrillin-1 (FBN1) mRNA and asprosin in follicular development in water buffalo. Theriogenology 178:67–72. https://doi.org/10.1016/j.theriogenology.2021.11.004

    Article  CAS  PubMed  Google Scholar 

  76. Batalha IM, Maylem ERS, Spicer LJ, Pena Bello CA, Archilia EC, Schutz LF (2023) Effects of asprosin on estradiol and progesterone secretion and proliferation of bovine granulosa cells. Mol Cell Endocrinol 565:111890. https://doi.org/10.1016/j.mce.2023.111890

    Article  CAS  PubMed  Google Scholar 

  77. Acara AC, Bolatkale M, Kiziloglu I, Ibisoglu E, Can C (2018) A novel biochemical marker for predicting the severity of ACS with unstable angina pectoris: asprosin. Am J Emerg Med 36(8):1504–1505. https://doi.org/10.1016/j.ajem.2017.12.032

    Article  PubMed  Google Scholar 

  78. Moradi N, Fouani FZ, Vatannejad A, Bakhti Arani A, Shahrzad S, Fadaei R (2021) Serum levels of asprosin in patients diagnosed with coronary artery disease (CAD): a case-control study. Lipids Health Dis 20(1):88. https://doi.org/10.1186/s12944-021-01514-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wen MS, Wang CY, Yeh JK, Chen CC, Tsai ML, Ho MY et al (2020) The role of asprosin in patients with dilated cardiomyopathy. BMC Cardiovasc Disord 20(1):402. https://doi.org/10.1186/s12872-020-01680-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. You M, Liu Y, Wang B, Li L, Zhang H, He H et al (2022) Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol 21(1):25. https://doi.org/10.1186/s12933-022-01457-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liang G, Wang S, Shao J, Jin YJ, Xu L, Yan Y et al (2022) Tenascin-X mediates flow-induced suppression of EndMT and atherosclerosis. Circ Res 130(11):1647–1659. https://doi.org/10.1161/CIRCRESAHA.121.320694

    Article  CAS  PubMed  Google Scholar 

  82. Halling JF, Pilegaard H (2020) PGC-1alpha-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab 45(9):927–936. https://doi.org/10.1139/apnm-2020-0005

    Article  CAS  PubMed  Google Scholar 

  83. Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M et al (2006) Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol 4(11):e369. https://doi.org/10.1371/journal.pbio.0040369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ko JR, Seo DY, Kim TN, Park SH, Kwak HB, Ko KS et al (2019) Aerobic exercise training decreases hepatic asprosin in diabetic rats. J Clin Med. https://doi.org/10.3390/jcm8050666

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zou J, Xu C, Zhao ZW, Yin SH, Wang G (2022) Asprosin inhibits macrophage lipid accumulation and reduces atherosclerotic burden by up-regulating ABCA1 and ABCG1 expression via the p38/Elk-1 pathway. J Transl Med 20(1):337. https://doi.org/10.1186/s12967-022-03542-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340(2):115–126. https://doi.org/10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Z, Tan Y, Zhu L, Zhang B, Feng P, Gao E et al (2019) Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci 231:116554. https://doi.org/10.1016/j.lfs.2019.116554

    Article  CAS  PubMed  Google Scholar 

  88. Goodarzi G, Setayesh L, Fadaei R, Khamseh ME, Aliakbari F, Hosseini J et al (2021) Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol Biol Rep 48(7):5443–5450. https://doi.org/10.1007/s11033-021-06551-2

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, Jiang H, Ma X, Wu H (2020) Increased serum level and impaired response to glucose fluctuation of asprosin is associated with type 2 diabetes mellitus. J Diabetes Investig 11(2):349–355. https://doi.org/10.1111/jdi.13148

    Article  CAS  PubMed  Google Scholar 

  90. Chittezhath M, Wai CMM, Tay VSY, Chua M, Langley SR, Ali Y (2020) TLR4 signals through islet macrophages to alter cytokine secretion during diabetes. J Endocrinol 247(1):87. https://doi.org/10.1530/JOE-20-0131

    Article  CAS  PubMed  Google Scholar 

  91. Nackiewicz D, Dan M, He W, Kim R, Salmi A, Rutti S et al (2014) TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. Diabetologia 57(8):1645–1654. https://doi.org/10.1007/s00125-014-3249-1

    Article  CAS  PubMed  Google Scholar 

  92. Yung JHM, Giacca A (2020) Role of c-Jun N-terminal Kinase (JNK) in obesity and type 2 diabetes. Cells. https://doi.org/10.3390/cells9030706

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shabir K, Gharanei S, Orton S, Patel V, Chauhan P, Karteris E et al (2022) Asprosin exerts pro-inflammatory effects in THP-1 macrophages mediated via the toll-like receptor 4 (TLR4) pathway. Int J Mol Sci. https://doi.org/10.3390/ijms24010227

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang R, Hu W (2021) Asprosin promotes beta-cell apoptosis by inhibiting the autophagy of beta-cell via AMPK-mTOR pathway. J Cell Physiol 236(1):215–221. https://doi.org/10.1002/jcp.29835

    Article  CAS  PubMed  Google Scholar 

  95. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Merz KE, Thurmond DC (2020) Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol 10(3):785–809. https://doi.org/10.1002/cphy.c190029

    Article  PubMed  PubMed Central  Google Scholar 

  97. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(S2):S157–S163. https://doi.org/10.2337/dc09-S302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A (2019) Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol 234(6):8152–8161. https://doi.org/10.1002/jcp.27603

    Article  CAS  PubMed  Google Scholar 

  99. Jung TW, Kim HC, Kim HU, Park T, Park J, Kim U et al (2019) Asprosin attenuates insulin signaling pathway through PKCdelta-activated ER stress and inflammation in skeletal muscle. J Cell Physiol 234(11):20888–20899. https://doi.org/10.1002/jcp.28694

    Article  CAS  PubMed  Google Scholar 

  100. Wiecek M, Szymura J, Maciejczyk M, Kantorowicz M, Szygula Z (2018) Acute anaerobic exercise affects the secretion of asprosin, irisin, and other cytokines-a comparison between sexes. Front Physiol 9:1782. https://doi.org/10.3389/fphys.2018.01782

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhang H, Hu W, Zhang G (2020) Circulating asprosin levels are increased in patients with type 2 diabetes and associated with early-stage diabetic kidney disease. Int Urol Nephrol 52(8):1517–1522. https://doi.org/10.1007/s11255-020-02509-8

    Article  CAS  PubMed  Google Scholar 

  102. Deng X, Zhao L, Guo C, Yang L, Wang D, Li Y et al (2020) Higher serum asprosin level is associated with urinary albumin excretion and renal function in type 2 diabetes. Diabetes Metab Syndr Obes 13:4341–4351. https://doi.org/10.2147/DMSO.S283413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ying Zhang: conceptualization, writing-original draft preparation, literature search, visualization; Ping Yang: writing—reviewing and editing, literature search, supervision; Xiaojun Zhang: writing—reviewing and editing, literature search, visualization; Shudong Liu: writing—reviewing and editing, literature search; Kai Lou: conceptualization, writing—reviewing and editing, visualization, supervision. All authors revised and approved the final manuscript.

Corresponding authors

Correspondence to S. Liu or K. Lou.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, P., Zhang, X. et al. Asprosin: its function as a novel endocrine factor in metabolic-related diseases. J Endocrinol Invest (2024). https://doi.org/10.1007/s40618-024-02360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-024-02360-z

Keywords

Navigation