Skip to main content
Log in

Association between sarcopenia and prediabetes among non-elderly US adults

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Aim

To explore the specific association between sarcopenia and prediabetes based on large population samples.

Methods

A total of 16,116 U.S. adults aged 20–59 with dual energy X-ray absorptiometry (DXA) was identified from the National Health and Nutrition Examination Surveys (NHANES). Sarcopenia was defined according to appendicular skeletal muscle mass (ASM) adjusted for body mass index (BMI). Multivariable binary logistic regression models were used to ascertain odds ratios (ORs) for developing prediabetes. Stratified analyses were also performed.

Results

Prevalence of prediabetes was higher in the sarcopenia group (n = 1055) compared with the non-sarcopenia group (n = 15,061) (45.50% vs 28.74%, P < 0.001). Sarcopenia was strongly associated with an increased risk of prediabetes after full adjustment (OR = 1.21, 95CI%: 1.05, 1.39, P = 0.009). In the stratified analysis, this association remained significant independent of obesity, triglycerides, and low-density lipoprotein cholesterol levels. When sarcopenia subjects combined with obesity especially central obesity, the risk of prediabetes was the highest (OR = 2.63, 95CI%: 2.22, 3.11, P < 0.001). Furthermore, a greater proportion of any of impaired glucose tolerance (IGT) individuals was observed in the sarcopenia group compared to the non-sarcopenia group among prediabetes population (41.72% vs 24.06%, P < 0.001).

Conclusions

Sarcopenia was positively associated with prevalent prediabetes especially IGT in the non-elderly. Moreover, synergistic interactions between the sarcopenia and obesity could greatly increase the risk of prediabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American Diabetes A (2019) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care 42:S13–S28

    Article  Google Scholar 

  2. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379:2279–2290

    Article  PubMed  PubMed Central  Google Scholar 

  3. Plantinga LC, Crews DC, Coresh J, Miller ER 3rd, Saran R et al (2010) Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol 5:673–682

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A et al (2008) Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care 31:464–469

    Article  CAS  PubMed  Google Scholar 

  5. Algvere P, Efendic S, Luft R, Wajngot A (1985) Retinal microangiopathy and pigment epithelial lesions in subjects with normal, borderline, and decreased oral glucose tolerance. Br J Ophthalmol 69:416–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pour OR, Dagogo-Jack S (2011) Prediabetes as a therapeutic target. Clin Chem 57:215–220

    Article  CAS  PubMed  Google Scholar 

  7. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P et al (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet 393:2636–2646

    Article  PubMed  Google Scholar 

  9. Bauer J, Morley JE, Schols A, Ferrucci L, Cruz-Jentoft AJ et al (2019) Sarcopenia: a time for action. An SCWD position paper. J Cachexia Sarcopenia Muscle 10:956–961

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qiao YS, Chai YH, Gong HJ, Zhuldyz Z, Stehouwer CDA et al (2021) The association between diabetes mellitus and risk of sarcopenia: accumulated evidences from observational studies. Front Endocrinol (Lausanne) 12:782391

    Article  PubMed  Google Scholar 

  11. Nishikawa H, Asai A, Fukunishi S, Nishiguchi S, Higuchi K (2021) Metabolic syndrome and sarcopenia. Nutrients 13:3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peng TC (2018) Role of sarcopenia in nonalcoholic fatty liver disease: definition is crucially important. Hepatology 68:788–789

    Article  PubMed  Google Scholar 

  13. Petermann-Rocha F, Ferguson LD, Gray SR, Rodriguez-Gomez I, Sattar N et al (2021) Association of sarcopenia with incident osteoporosis: a prospective study of 168,682 UK biobank participants. J Cachexia Sarcopenia Muscle 12:1179–1188

    Article  PubMed  PubMed Central  Google Scholar 

  14. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558

    Article  PubMed  PubMed Central  Google Scholar 

  15. American Diabetes A (2021) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care 44:S15–S33

    Article  Google Scholar 

  16. Gong R, Luo G, Wang M, Ma L, Sun S et al (2021) Associations between TG/HDL ratio and insulin resistance in the US population: a cross-sectional study. Endocr Connect 10:1502–1512

    Article  PubMed  PubMed Central  Google Scholar 

  17. Becker DJ, Oloya J, Ezeamama AE (2015) Household socioeconomic and demographic correlates of cryptosporidium seropositivity in the United States. PLoS Negl Trop Dis 9:e0004080

    Article  PubMed  PubMed Central  Google Scholar 

  18. MacGregor KA, Gallagher IJ, Moran CN (2021) Relationship between insulin sensitivity and menstrual cycle is modified by BMI, fitness, and physical activity in NHANES. J Clin Endocrinol Metab 106:2979–2990

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han E, Lee YH, Kim G, Kim SR, Lee BW et al (2016) Sarcopenia is associated with albuminuria independently of hypertension and diabetes: KNHANES 2008–2011. Metabolism 65:1531–1540

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Yan AF, Cheskin LJ, Shi Z (2022) Higher serum testosterone level was associated with a lower risk of prediabetes in US adults: findings from nationally representative data. Nutrients 15:9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Benjamin SM, Valdez R, Geiss LS, Rolka DB, Narayan KM (2003) Estimated number of adults with prediabetes in the US in 2000: opportunities for prevention. Diabetes Care 26:645–649

    Article  PubMed  Google Scholar 

  22. Kim JK, Ailshire JA, Crimmins EM (2019) Twenty-year trends in cardiovascular risk among men and women in the United States. Aging Clin Exp Res 31:135–143

    Article  PubMed  Google Scholar 

  23. Srikanthan P, Karlamangla AS (2011) Relative muscle mass is inversely associated with insulin resistance and prediabetes. findings from the third national health and nutrition examination survey. J Clin Endocrinol Metab 96:2898–2903

    Article  CAS  PubMed  Google Scholar 

  24. Sambashivaiah S, Harridge SDR, Sharma N, Selvam S, Rohatgi P et al (2019) Asian Indians with prediabetes have similar skeletal muscle mass and function to those with type 2 diabetes. Front Nutr 6:179

    Article  PubMed  PubMed Central  Google Scholar 

  25. LeCroy MN, Hua S, Kaplan RC, Sotres-Alvarez D, Qi Q et al (2021) Associations of changes in fat free mass with risk for type 2 diabetes: Hispanic community health study/study of Latinos. Diabetes Res Clin Pract 171:108557

    Article  CAS  PubMed  Google Scholar 

  26. Leem AY, Kim YS, Chung KS, Park MS, Kang YA et al (2022) Sarcopenia is associated with cardiovascular risk in men with COPD, independent of adiposity. Respir Res 23:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murdock DJ, Wu N, Grimsby JS, Calle RA, Donahue S et al (2022) The prevalence of low muscle mass associated with obesity in the USA. Skelet Muscle 12:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Merli M, Lattanzi B, Aprile F (2019) Sarcopenic obesity in fatty liver. Curr Opin Clin Nutr Metab Care 22:185–190

    Article  PubMed  Google Scholar 

  29. Lu CW, Yang KC, Chang HH, Lee LT, Chen CY et al (2013) Sarcopenic obesity is closely associated with metabolic syndrome. Obes Res Clin Pract 7:e301-307

    Article  PubMed  Google Scholar 

  30. Zhang X, Xie X, Dou Q, Liu C, Zhang W et al (2019) Association of sarcopenic obesity with the risk of all-cause mortality among adults over a broad range of different settings: a updated meta-analysis. BMC Geriatr 19:183

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hong SH, Choi KM (2020) Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. Int J Mol Sci 21:494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157-163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gan Z, Fu T, Kelly DP, Vega RB (2018) Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 28:969–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang WT, Wu CH, Hsu LW, Chen PW, Yu JR et al (2017) Serum vitamin D, intact parathyroid hormone, and Fetuin A concentrations were associated with geriatric sarcopenia and cardiac hypertrophy. Sci Rep 7:40996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM et al (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57:M326-332

    Article  PubMed  Google Scholar 

  36. Standl E (2012) Dysglycemia and abdominal obesity. Curr Vasc Pharmacol 10:678–679

    Article  CAS  PubMed  Google Scholar 

  37. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56:1010–1013

    Article  CAS  PubMed  Google Scholar 

  38. Batsis JA, Villareal DT (2018) Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 14:513–537

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18:388–395

    Article  CAS  PubMed  Google Scholar 

  40. Son JW, Lee SS, Kim SR, Yoo SJ, Cha BY et al (2017) Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES. Diabetologia 60:865–872

    Article  PubMed  Google Scholar 

  41. Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E et al (1982) The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31:957–963

    Article  CAS  PubMed  Google Scholar 

  42. Frank P, Andersson E, Ponten M, Ekblom B, Ekblom M et al (2016) Strength training improves muscle aerobic capacity and glucose tolerance in elderly. Scand J Med Sci Sports 26:764–773

    Article  CAS  PubMed  Google Scholar 

  43. Miller WJ, Sherman WM, Ivy JL (1984) Effect of strength training on glucose tolerance and post-glucose insulin response. Med Sci Sports Exerc 16:539–543

    Article  CAS  PubMed  Google Scholar 

  44. Alatrach M, Agyin C, Adams J, DeFronzo RA, Abdul-Ghani MA (2017) Decreased basal hepatic glucose uptake in impaired fasting glucose. Diabetologia 60:1325–1332

    Article  CAS  PubMed  Google Scholar 

  45. Ter Horst KW, Gilijamse PW, Ackermans MT, Soeters MR, Nieuwdorp M et al (2016) Impaired insulin action in the liver, but not in adipose tissue or muscle, is a distinct metabolic feature of impaired fasting glucose in obese humans. Metabolism 65:757–763

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (82104786 and 82074381), Shanghai Municipal Key Clinical Specialty (shslczdzk05401), Construction of Special Disease Alliance of Traditional Chinese Medicine in East China Region and City Level-Construction of specialty alliance of Endocrine and Metabolic Diseases of Traditional Chinese Medicine in Yangtze River Delta (ZY(2021–2023)-0302) and Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200). We thank all the participants in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Xu or H. Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The studies involving human participants were reviewed and approved by NCHS of the CDC.

Informed consent

The patients/participants provided their written informed consent to participate in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Han, X., Chen, Q. et al. Association between sarcopenia and prediabetes among non-elderly US adults. J Endocrinol Invest 46, 1815–1824 (2023). https://doi.org/10.1007/s40618-023-02038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02038-y

Keywords

Navigation