Skip to main content

Advertisement

Log in

Sclerostin and bone turnover markers response to cycling and running at the same moderate-to-vigorous exercise intensity in healthy men

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Recreational cycling is a popular activity which stimulates and improves cardiovascular fitness. The corresponding benefits for bone are unclear.

Purpose

This study examined the effect of running (high-impact) vs. cycling (low-impact), at the same moderate-to-vigorous exercise intensity, on markers of bone formation (N-terminal propeptide of type I collagen, PINP) and bone resorption (C-telopeptide of type I collagen, CTX-1), a non-collagenous bone remodeling marker (osteocalcin), as well as bone-modulating factors, including parathyroid hormone (PTH), irisin (myokine) and sclerostin (osteokine).

Methods

Thirteen healthy men (23.7 ± 1.0 y) performed two progressive exercise tests to exhaustion (peak VO2) on a cycle ergometer (CE) and on a treadmill (TM). On subsequent separate days, in randomized order, participants performed 30-min continuous running or cycling at 70% heart rate reserve (HRR). Blood was drawn before, immediately post- and 1 h into recovery.

Results

PTH transiently increased (CE, 51.7%; TM, 50.6%) immediately after exercise in both exercise modes. Sclerostin levels increased following running only (27.7%). Irisin increased following both running and cycling. In both exercise modes, CTX-1 decreased immediately after exercise, with no significant change in PINP and osteocalcin.

Conclusion

At the same moderate-to-vigorous exercise intensity, running appears to result in a greater transient sclerostin response compared with cycling, while the responses of bone markers, PTH and irisin are similar. The longer-term implications of this differential bone response need to be further examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nikander R, Sievänen H, Heinonen A et al (2010) Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 8:47. https://doi.org/10.1186/1741-7015-8-47

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lima F, De Falco V, Baima J et al (2001) Effect of impact load and active load on bone metabolism and body composition of adolescent athletes. Med Sci Sports Exerc 33:1318–1323. https://doi.org/10.1097/00005768-200108000-00012

    Article  CAS  PubMed  Google Scholar 

  3. Dolan E, Varley I, Ackerman KE et al (2020) The bone metabolic response to exercise and nutrition. Exerc Sport Sci Rev 48:49–58. https://doi.org/10.1249/JES.0000000000000215

    Article  PubMed  Google Scholar 

  4. Rector RS, Rogers R, Ruebel M, Hinton PS (2008) Participation in road cycling vs running is associated with lower bone mineral density in men. Metabolism Clin Experim 57:226–232. https://doi.org/10.1016/j.metabol.2007.09.005

  5. Barry DW, Kohrt WM (2008) BMD decreases over the course of a year in competitive male cyclists. J Bone Miner Res 23:484–491. https://doi.org/10.1359/jbmr.071203

    Article  CAS  PubMed  Google Scholar 

  6. Kohrt WM, Bloomfield SA, Little KD et al (2004) Physical activity and bone health. Med Sci Sports Exerc 36:1985–1996. https://doi.org/10.1249/01.MSS.0000142662.21767.58

    Article  PubMed  Google Scholar 

  7. Powell KE, King AC, Buchner DM, et al (2019) The scientific foundation for the physical activity guidelines for Americans, 2nd edition. J Phys Activ Health 16:1–11. https://doi.org/10.1123/jpah.2018-0618

  8. Kouvelioti R, Kurgan N, Falk B et al (2019) Cytokine and sclerostin response to high-intensity interval running versus cycling. Med Sci Sports Exerc 51:2458–2464. https://doi.org/10.1249/MSS.0000000000002076

    Article  CAS  PubMed  Google Scholar 

  9. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. In: Annals of the New York Academy of Sciences. Blackwell Publishing Inc., pp 385–396

  10. Banfi G, Lombardi G, Colombini A, Lippi G (2010) Bone metabolism markers in sports medicine. Sports Med 40:697–714. https://doi.org/10.2165/11533090-000000000-00000

    Article  PubMed  Google Scholar 

  11. Vasikaran SD, Paul Chubb SA (2016) The use of biochemical markers of bone turnover in the clinical management of primary and secondary osteoporosis. Endocrine 52:222–225. https://doi.org/10.1007/s12020-016-0900-2

    Article  CAS  PubMed  Google Scholar 

  12. Bauer D, Krege J, Lane N et al (2012) National Bone Health Alliance Bone Turnover Marker Project: Current practices and the need for US harmonization, standardization, and common reference ranges. Osteoporos Int 23:2425–2433. https://doi.org/10.1007/s00198-012-2049-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Winkler DG, Sutherland MK, Geoghegan JC et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. Eur Mol Biol Organiz 22:6267–6276

    Article  CAS  Google Scholar 

  14. Robling AG, Bellido TM, Harris SE et al (2007) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/Sclerostin. J Biol Chem 283:5866–5875. https://doi.org/10.1074/jbc.m705092200

    Article  PubMed  Google Scholar 

  15. Kouvelioti R, LeBlanc P, Falk B et al (2019) Effects of high-intensity interval running versus cycling on sclerostin, and markers of bone turnover and oxidative stress in young men. Calcif Tissue Int 104:582–590. https://doi.org/10.1007/s00223-019-00524-1

    Article  CAS  PubMed  Google Scholar 

  16. Kouvelioti R, Kurgan N, Falk B et al (2018) Response of sclerostin and bone turnover markers to high intensity interval exercise in young women: does impact matter? Biomed Res Int 2018:1–8. https://doi.org/10.1155/2018/4864952

    Article  CAS  Google Scholar 

  17. Kouvelioti R, Kurgan N, Falk B et al (2019) Cytokine and sclerostin response to high-intensity interval running versus cycling. Med Sci Sports Exerc. https://doi.org/10.1249/mss.0000000000002076

    Article  PubMed  Google Scholar 

  18. Kaji H (2016) Effects of myokines on bone. BoneKEy Reports 5:1–6. https://doi.org/10.1038/bonekey.2016.48

    Article  Google Scholar 

  19. Boström P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farmer SR, Ph D (2019) Clinical implications of basic research boning up on Irisin. NEJM 1480–1482

  21. Wittich A, Mautalen CA, Oliveri MB et al (1998) Professional football (soccer) players have a markedly greater skeletal mineral content, density and size than age- and BMI-matched controls. Calcif Tissue Int 63:112–117. https://doi.org/10.1007/s002239900499

    Article  CAS  PubMed  Google Scholar 

  22. Kim H, Wrann CD, Jedrychowski M et al (2018) Irisin . Cell 175:1756-1768.e17. https://doi.org/10.1016/j.cell.2018.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Colaianni G, Cuscito C, Mongelli T et al (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA 112:12157–12162. https://doi.org/10.1073/pnas.1516622112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. American Heart Association Recommendations for Physical Activity in Adults and Kids | American Heart Association. https://www.heart.org/en/healthy-living/fitness/fitness-basics/aha-recs-for-physical-activity-in-adults. Accessed 7 Jul 2020

  25. Physical Activity Guidelines for Americans 2nd edition

  26. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248. https://doi.org/10.1152/jappl.1974.37.2.247

    Article  CAS  PubMed  Google Scholar 

  27. Borer KT (2013) Advanced exercise endocrinology. Chapter 10. p 219–228, 1st ed. Human Kinetics

  28. Frings-Meuthen P, Boehme G, Liphardt AM et al (2013) Sclerostin and DKK1 levels during 14 and 21 days of bed rest in healthy young men. J Musculoskelet Neuronal Interactions 13:45–52

    CAS  Google Scholar 

  29. Spatz JM, Fields EE, Yu EW et al (2012) Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab 97:1736–1740. https://doi.org/10.1210/jc.2012-1579

    Article  CAS  Google Scholar 

  30. Falk B, Haddad F, Klentrou P et al (2016) Differential sclerostin and parathyroid hormone response to exercise in boys and men. Osteoporos Int 27:1245–1249. https://doi.org/10.1007/s00198-015-3310-z

    Article  CAS  PubMed  Google Scholar 

  31. Pickering ME, Simon M, Sornay-Rendu E et al (2017) Serum sclerostin increases after acute physical activity. Calcif Tissue Int 101:170–173. https://doi.org/10.1007/s00223-017-0272-5

    Article  CAS  PubMed  Google Scholar 

  32. Silva BC, Bilezikian JP (2015) Parathyroid hormone: Anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 22:41–50

    Article  CAS  Google Scholar 

  33. Onyia JE, Helvering LM, Gelbert L et al (2005) Molecular profile of catabolic versus anabolic treatment regimens of parathyroid hormone (PTH) in rat bone: An analysis by DNA microarray. J Cell Biochem 95:403–418. https://doi.org/10.1002/jcb.20438

    Article  CAS  PubMed  Google Scholar 

  34. Barry DW, Kohrt WM (2007) Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium. Calcif Tissue Int 80:359–365. https://doi.org/10.1007/s00223-007-9028-y

    Article  CAS  PubMed  Google Scholar 

  35. Townsend R, Elliott-Sale KJ, Pinto AJ et al (2016) Parathyroid hormone secretion is controlled by both ionized calcium and phosphate during exercise and recovery in men. J Clin Endocrinol Metab 101:3231–3239. https://doi.org/10.1210/jc.2016-1848

    Article  CAS  PubMed  Google Scholar 

  36. Kohrt WM, Wherry SJ, Wolfe P et al (2018) Maintenance of serum ionized calcium during exercise attenuates parathyroid hormone and bone resorption responses. J Bone Miner Res 33:1326–1334. https://doi.org/10.1002/jbmr.3428

    Article  CAS  PubMed  Google Scholar 

  37. Scott JPR, Sale C, Greeves JP et al (2010) The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. J Appl Physiol 110:423–432. https://doi.org/10.1152/japplphysiol.00764.2010

    Article  CAS  PubMed  Google Scholar 

  38. Gardinier JD, Mohamed F, Kohn DH (2015) PTH signaling during exercise contributes to bone adaptation. J Bone Miner Res 30:1053–1063. https://doi.org/10.1002/jbmr.2432

    Article  CAS  PubMed  Google Scholar 

  39. Winn NC, Grunewald ZI, Liu Y et al (2017) Plasma irisin modestly increases during moderate and high-intensity afternoon exercise in obese females. PLoS ONE 12:1–12. https://doi.org/10.1371/journal.pone.0170690

    Article  CAS  Google Scholar 

  40. Vegge G, Hollan I, Slettaløkken G et al (2015) Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLoS ONE 10:e0121367. https://doi.org/10.1371/journal.pone.0121367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nygaard H, Slettaløkken G, Vegge G et al (2015) Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLoS ONE 10:e0121367. https://doi.org/10.1371/journal.pone.0121367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scott JPR, Sale C, Greeves JP, et al (2011) The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. J Appl Physiol 110:423–32. https://doi.org/10.1152/japplphysiol.00764.2010

  43. Guillemant J, Accarie C, Peres G, Guillemant S (2004) Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcif Tissue Int 74:407–414. https://doi.org/10.1007/s00223-003-0070-0

    Article  CAS  PubMed  Google Scholar 

  44. Qvist P, Christgau S, Pedersen BJ et al (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): Effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61. https://doi.org/10.1016/S8756-3282(02)00791-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants for participating in our study, and the study coordinator (Pearl Lynne Law), the Human Performance Laboratory technician (Hoang Pham), UCI ICTS nurses and the Pediatric Exercise and Genomics Research Center Senior Biostatistician (Annamarie Stehli) for their assistance with different parts of the study.

Funding

This study was funded by NIH U01-TR002004 and PERC Systems Biology Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Radom-Aizik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by Institutional Review Board at the University of California Irvine and carried out in accordance with the principles set out in the Declaration of Helsinki.

Informed consent

Written informed consent was obtained from all participants upon enrollment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dror, N., Carbone, J., Haddad, F. et al. Sclerostin and bone turnover markers response to cycling and running at the same moderate-to-vigorous exercise intensity in healthy men. J Endocrinol Invest 45, 391–397 (2022). https://doi.org/10.1007/s40618-021-01659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01659-5

Keywords

Navigation