Skip to main content

Advertisement

Log in

Associations between gut microbiota and thyroidal function status in Chinese patients with Graves’ disease

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective

The imbalance of gut microbiota has been linked to manifold endocrine diseases, but the association with Graves’ disease (GD) is still unclear. The purpose of this study was to investigate the correlation between human gut microbiota and clinical characteristics and thyroidal functional status of GD.

Methods

14 healthy volunteers (CG) and 15 patients with primary GD (HG) were recruited as subjects. 16SrDNA high-throughput sequencing was performed on IlluminaMiSeq platform to analyze the characteristics of gut microbiota in patients with GD. Among them, the thyroid function of 13 patients basically recovered after treatment with anti-thyroid drugs (oral administration of Methimazole for 3–5 months). The fecal samples of patients after treatment (TG) were sequenced again, to further explore and investigate the potential relationship between dysbacteriosis and GD.

Results

In terms of alpha diversity index, the observed OTUs, Simpson and Shannon indices of gut microbiota in patients with GD were significantly lower than those in healthy volunteers (P < 0.05).The difference of bacteria species was mainly reflected in the genus level, in which the relative abundance of Lactobacillus, Veillonella and Streptococcus increased significantly in GD. After the improvement of thyroid function, a significant reduction at the genus level were Blautia, Corynebacter, Ruminococcus and Streptococcus, while Phascolarctobacterium increased significantly (P < 0.05). According to Spearman correlation analysis, the correlation between the level of thyrotropin receptor antibody (TRAb) and the relative abundance of Lactobacillus and Ruminococcus was positive, while Synergistetes and Phascolarctobacterium showed a negative correlation with TRAb. Besides, there were highly significant negative correlation between Synergistetes and clinical variables of TRAb, TPOAb and TGAb (P < 0.05, R <  − 0.6).

Conclusions

This study revealed that functional status and TRAb level in GD were associated with composition and biological function in the gut microbiota, with Synergistetes and Phascolarctobacterium protecting the thyroid probably, while Ruminococcus and Lactobacillus may be novel biomarkers of GD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burcelin R, Nicolas S, Blasco-Baque V (2016) Microbiotes and metabolic diseases: the bases for therapeutic strategies. Med Sci (Paris) 32:952–960. https://doi.org/10.1051/medsci/20163211010

    Article  Google Scholar 

  2. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. https://doi.org/10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  3. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  4. Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK (2014) Specialized metabolites from the microbiome in health and disease. Cell Metab 20:719–730. https://doi.org/10.1016/j.cmet.2014.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https://doi.org/10.1038/nature11450

    Article  CAS  PubMed  Google Scholar 

  6. Diamant M, Blaak EE, de Vos WM (2011) Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12:272–281. https://doi.org/10.1111/j.1467-789X.2010.00797.x

    Article  CAS  PubMed  Google Scholar 

  7. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  8. Fei N, Zhao L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7:880–884. https://doi.org/10.1038/ismej.2012.153

    Article  CAS  PubMed  Google Scholar 

  9. Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C et al (2013) Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog 5:10. https://doi.org/10.1186/1757-4749-5-10

    Article  PubMed  PubMed Central  Google Scholar 

  10. Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW et al (2013) Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring) 21:E607–E615. https://doi.org/10.1002/oby.20466

    Article  CAS  Google Scholar 

  11. Xu P, Li M, Zhang J, Zhang T (2012) Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol 12:283. https://doi.org/10.1186/1471-2180-12-283

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A, Till H et al (2013) Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 15:211–226. https://doi.org/10.1111/j.1462-2920.2012.02845.x

    Article  CAS  PubMed  Google Scholar 

  13. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL et al (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59:3049–3057. https://doi.org/10.2337/db10-0253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI et al (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65. https://doi.org/10.3945/ajcn.110.010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18:190–195. https://doi.org/10.1038/oby.2009.167

    Article  Google Scholar 

  16. Yun Y, Kim HN, Kim SE, Heo SG, Chang Y, Ryu S et al (2017) Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol 17:151. https://doi.org/10.1186/s12866-017-1052-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA (2019) Diet, Gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv Nutr 10:S17–S30. https://doi.org/10.1093/advances/nmy078

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bahn CR, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I et al (2011) Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 21:593–646. https://doi.org/10.1089/thy.2010.0417

    Article  CAS  Google Scholar 

  19. Rees SB, McLachlan SM, Furmaniak J (1988) Autoantibodies to the thyrotropin receptor. Endocr Rev 9:106–121. https://doi.org/10.1210/edrv-9-1-106

    Article  Google Scholar 

  20. Zhou L, Li X, Ahmed A, Wu D, Liu L, Qiu J et al (2014) Gut microbe analysis between hyperthyroid and healthy individuals. Curr Microbiol 69:675–680. https://doi.org/10.1007/s00284-014-0640-6

    Article  CAS  PubMed  Google Scholar 

  21. Ishaq HM, Mohammad IS, Shahzad M, Ma C, Raza MA, Wu X et al (2018) Molecular alteration analysis of human gut microbial composition in Graves’ disease patients. Int J Biol Sci 14:1558–1570. https://doi.org/10.7150/ijbs.24151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi TT, Xin Z, Hua L, Zhao RX, Yang YL, Wang H et al (2019) Alterations in the intestinal microbiota of patients with severe and active Graves’ orbitopathy: a cross-sectional study. J Endocrinol Invest 42:967–978. https://doi.org/10.1007/s40618-019-1010-9

    Article  CAS  PubMed  Google Scholar 

  23. Hagerty SL, Hutchison KE, Lowry CA, Bryan AD (2020) An empirically derived method for measuring human gut microbiome alpha diversity: demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS ONE 15:e229204. https://doi.org/10.1371/journal.pone.0229204

    Article  CAS  Google Scholar 

  24. Covelli D, Ludgate M (2017) The thyroid, the eyes and the gut: a possible connection. J Endocrinol Invest 40:567–576. https://doi.org/10.1007/s40618-016-0594-6

    Article  CAS  PubMed  Google Scholar 

  25. Young VB (2012) The intestinal microbiota in health and disease. Curr Opin Gastroenterol 28:63–69. https://doi.org/10.1097/MOG.0b013e32834d61e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Leo S, Lee SY, Braverman LE (2016) Hyperthyroidism. Lancet 388:906–918. https://doi.org/10.1016/S0140-6736(16)00278-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen LY, Zhou B, Chen ZW, Fang LZ (2010) Case report: recurrent severe vomiting due to hyperthyroidism. J Zhejiang Univ Sci B 11:218–220. https://doi.org/10.1631/jzus.B0900371

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ebert EC (2010) The thyroid and the gut. J Clin Gastroenterol 44:402–406. https://doi.org/10.1097/MCG.0b013e3181d6bc3e

    Article  CAS  PubMed  Google Scholar 

  29. You M, Mo S, Watt RM, Leung WK (2013) Prevalence and diversity of Synergistetes taxa in periodontal health and disease. J Periodontal Res 48:159–168. https://doi.org/10.1111/j.1600-0765.2012.01516.x

    Article  CAS  PubMed  Google Scholar 

  30. Chen B, Sun L, Zhang X (2017) Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J Autoimmun 83:31–42. https://doi.org/10.1016/j.jaut.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  31. Lopez P, de Paz B, Rodriguez-Carrio J, Hevia A, Sanchez B, Margolles A et al (2016) Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep 6:24072. https://doi.org/10.1038/srep24072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Omenetti S, Pizarro TT (2015) The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol 6:639. https://doi.org/10.3389/fimmu.2015.00639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y (2017) Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med 14:3122–3126. https://doi.org/10.3892/etm.2017.4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Priyadarshini M, Kotlo KU, Dudeja PK, Layden BT (2018) Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr Physiol 8:1091–1115. https://doi.org/10.1002/cphy.c170050

    Article  PubMed  PubMed Central  Google Scholar 

  35. Park J, Lee J, Yeom Z, Heo D, Lim YH (2017) Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci Rep 7:14520. https://doi.org/10.1038/s41598-017-15163-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimizu J, Kubota T, Takada E, Takai K, Fujiwara N, Arimitsu N et al (2018) Propionate-producing bacteria in the intestine may associate with skewed responses of IL10-producing regulatory T cells in patients with relapsing polychondritis. PLoS ONE 13:e203657. https://doi.org/10.1371/journal.pone.0203657

    Article  CAS  Google Scholar 

  37. Chua HH, Chou HC, Tung YL, Chiang BL, Liao CC, Liu HH et al (2018) Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology 154:154–167. https://doi.org/10.1053/j.gastro.2017.09.006

    Article  PubMed  Google Scholar 

  38. Rocha-Ramirez LM, Perez-Solano RA, Castanon-Alonso SL, Moreno GS, Ramirez PA, Garcia GM et al (2017) Probiotic lactobacillus strains stimulate the inflammatory response and activate human macrophages. J Immunol Res 2017:4607491. https://doi.org/10.1155/2017/4607491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrari SM, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A et al (2019) Chemokines in hyperthyroidism. J Clin Transl Endocrinol 16:100196. https://doi.org/10.1016/j.jcte.2019.100196

    Article  PubMed  PubMed Central  Google Scholar 

  40. Duraes C, Moreira CS, Alvelos I, Mendes A, Santos LR, Machado JC et al (2014) Polymorphisms in the TNFA and IL6 genes represent risk factors for autoimmune thyroid disease. PLoS ONE 9:e105492. https://doi.org/10.1371/journal.pone.0105492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Inoue N, Watanabe M, Morita M, Tatusmi K, Hidaka Y, Akamizu T et al (2011) Association of functional polymorphisms in promoter regions of IL5, IL6 and IL13 genes with development and prognosis of autoimmune thyroid diseases. Clin Exp Immunol 163:318–323. https://doi.org/10.1111/j.1365-2249.2010.04306.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anvari M, Khalilzadeh O, Esteghamati A, Momen-Heravi F, Mahmoudi M, Esfahani SA et al (2010) Graves’ disease and gene polymorphism of TNF-alpha, IL-2, IL-6, IL-12, and IFN-γ. Endocrine 37:344–348. https://doi.org/10.1007/s12020-010-9311-y

    Article  CAS  PubMed  Google Scholar 

  43. Giusti C (2019) The Th1 chemokine MIG in Graves’ disease: a narrative review of the literature. Clin Ter 170:e285–e290. https://doi.org/10.7417/CT.2019.2149

    Article  CAS  PubMed  Google Scholar 

  44. Shiau MY, Huang CN, Yang TP, Hwang YC, Tsai KJ, Chi CJ et al (2007) Cytokine promoter polymorphisms in Taiwanese patients with Graves’ disease. Clin Biochem 40:213–217. https://doi.org/10.1016/j.clinbiochem.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  45. Matsuno H, Yudoh K, Katayama R, Nakazawa F, Uzuki M, Sawai T et al (2002) The role of TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology (Oxford) 41:329–337. https://doi.org/10.1093/rheumatology/41.3.329

    Article  CAS  Google Scholar 

  46. Gonzalez-Diaz SN, Sanchez-Borges M, Rangel-Gonzalez DM, Guzman-Avilan RI, Canseco-Villarreal JI, Arias-Cruz A (2020) Chronic urticaria and thyroid pathology. World Allergy Organ J 13:100101. https://doi.org/10.1016/j.waojou.2020.100101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lou J, Jiang Y, Rao B, Li A, Ding S, Yan H et al (2020) Fecal microbiomes distinguish patients with autoimmune hepatitis from healthy individuals. Front Cell Infect Microbiol 10:342. https://doi.org/10.3389/fcimb.2020.00342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ganesh BB, Bhattacharya P, Gopisetty A, Prabhakar BS (2011) Role of cytokines in the pathogenesis and suppression of thyroid autoimmunity. J Interferon Cytokine Res 31:721–731. https://doi.org/10.1089/jir.2011.0049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Makki K, Deehan EC, Walter J, Backhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–715. https://doi.org/10.1016/j.chom.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  50. Arif N, Sheehy EC, Do T, Beighton D (2008) Diversity of Veillonella spp. from sound and carious sites in children. J Dent Res 87:278–282. https://doi.org/10.1177/154405910808700308

    Article  CAS  PubMed  Google Scholar 

  51. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL et al (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009. https://doi.org/10.1128/jcm.40.3.1001-1009.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mashima I, Theodorea CF, Thaweboon B, Thaweboon S, Nakazawa F (2016) Identification of veillonella species in the tongue biofilm by using a novel one-step polymerase chain reaction method. PLoS ONE 11:e157516. https://doi.org/10.1371/journal.pone.0157516

    Article  CAS  Google Scholar 

  53. Marriott D, Stark D, Harkness J (2007) Veillonella parvula discitis and secondary bacteremia: a rare infection complicating endoscopy and colonoscopy? J Clin Microbiol 45:672–674. https://doi.org/10.1128/JCM.01633-06

    Article  CAS  PubMed  Google Scholar 

  54. Shah A, Panjabi C, Nair V, Chaudhry R, Thukral SS (2008) Veillonella as a cause of chronic anaerobic pneumonitis. Int J Infect Dis 12:e115–e117. https://doi.org/10.1016/j.ijid.2008.03.018

    Article  PubMed  Google Scholar 

  55. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14. https://doi.org/10.1093/intimm/dxh186

    Article  CAS  PubMed  Google Scholar 

  56. Egland PG, Palmer RJ, Kolenbrander PE (2004) Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci USA 101:16917–16922. https://doi.org/10.1073/pnas.0407457101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van den Bogert B, Meijerink M, Zoetendal EG, Wells JM, Kleerebezem M (2014) Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS ONE 9:e114277. https://doi.org/10.1371/journal.pone.0114277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. https://doi.org/10.1038/ncomms2852

    Article  CAS  PubMed  Google Scholar 

  59. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S et al (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 108:8030–8035. https://doi.org/10.1073/pnas.1016088108

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ozato N, Saito S, Yamaguchi T, Katashima M, Tokuda I, Sawada K et al (2019) Blautia genus associated with visceral fat accumulation in adults 20–76 years of age. NPJ Biofilms Microbiomes 5:28. https://doi.org/10.1038/s41522-019-0101-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Benitez-Paez A, Gomez DPE, Lopez-Almela I, Moya-Perez A, Codoner-Franch P, Sanz Y (2020) Depletion of blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening. mSystems. https://doi.org/10.1128/mSystems.00857-19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (No. 81774134 and No. 81873174); Natural Science Foundation of Jiangsu Province of China (No. BK20150558 and No. BK20171331); Postdoctoral Foundation of Jiangsu Province of China (No. 1501120C); Jiangsu Province 333 Talent Funding Project (No. BRA2017595); Young Medical Key Talents Project of Jiangsu Province (No. QNRC2016902); Key Research and Development Plan Project of Jiangsu Province—Social Development Projects (No. BE2020701).

Author information

Authors and Affiliations

Authors

Contributions

CJ, SJQ and GP contributed to the conception and design of this study. Data preparation, sample collection, data collection and analysis were conducted by CJ, WW, GZH, HSS, LHY, ZP and LB The first draft of the paper was written by CJ, and all authors participated in revising the previous version of the manuscript. All the authors have read and approved the final paper.

Corresponding authors

Correspondence to J. Shao or P. Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, W., Guo, Z. et al. Associations between gut microbiota and thyroidal function status in Chinese patients with Graves’ disease. J Endocrinol Invest 44, 1913–1926 (2021). https://doi.org/10.1007/s40618-021-01507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01507-6

Keywords

Navigation