Skip to main content

Advertisement

Log in

Decrease in serum calcitriol (but not free 25-hydroxyvitamin D) concentration in hip fracture healing

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective

To assess the decrease in serum calcitriol concentrations after hip fracture.

Methods

Serum concentrations of calcitriol, 25(OH)D, parathyroid hormone (PTH), directly measured free 25(OH)D, and indices of bone formation were measured in elderly patients with hip fracture (HF) and patients with elective hip replacement (EHR) at admission and after 7 weeks.

Results

A total of 45 patients with HF and 17 patients with EHR completed this prospective study. Baseline serum calcitriol levels were ≤ 60 pmol/l in 26% of the HF patients. After 7 weeks, they significantly decreased (p < 0.001). In patients with EHR, serum calcitriol was within the reference range in all but one patient and did not change during the 7-week recovery phase. Seven weeks after HF, a significant positive relationship was observed between the change in calcitriol and serum 25(OH)D concentration (r = 0.385, p = 0.009) and free 25(OH)D (r = 0.296, p = 0.048), and a decrease in calcitriol during recovery was associated with a decrease in serum PTH (p = 0.038). Seven weeks after HF, changes in both serum PTH and serum 25(OH)D concentrations contributed to the prediction of changes in serum calcitriol (R2 = 0.190, p = 0.012).

Conclusions

Unlike patients with EHR, subjects with HF had low serum 25(OH)D and low free 25(OH)D concentrations at admission, while their serum 1,25D levels were relatively elevated. Decreases in circulating calcitriol levels in the 7 weeks following hip surgery were associated with a resolution of secondary hyperparathyroidism and low availability of free 25(OH)D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sahota O, Gaynor K, Harwood RH et al (2001) Hypovitaminosis D and ‘functional hypoparathyroidism’-the NoNoF (Nottingham Neck of Femur) study. Age Ageing 30:467–472

    Article  CAS  PubMed  Google Scholar 

  2. Sakuma M, Endo N, Oinuma T et al (2006) Vitamin D and intact PTH status in patients with hip fracture. Osteoporos Int 17:1608–1614

    Article  CAS  PubMed  Google Scholar 

  3. Fisher AA, Davis MW (2007) Calcium-PTH-vitamin D axis in older patients with hip fracture. Osteoporos Int 18:693–695; author reply 697.

  4. Wang N, Chen Y, Ji J et al (2020) The relationship between serum vitamin D and fracture risk in the elderly: a meta-analysis. J Orthop Surg Res 15:81

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhuang HF, Wang PW, Li YZ et al (2020) Analysis of related factors of brittle hip fracture in postmenopausal women with osteoporosis. Orthop Surgery 12:194–198

    Article  Google Scholar 

  6. Nielson CM, Jones KS, Bouillon R et al (2016) Role of assay type in determining free 25-hydroxyvitamin D levels in diverse populations. N Engl J Med 374:1695–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwartz JB, Gallagher JC, Jorde R et al (2018) Determination of free 25(OH)D concentrations and their relationships to total 25(OH)D in multiple clinical populations. J Clin Endocrinol Metab 103:3278–3288

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xie Z, Wang X, Bikle DD (2020) Editorial: vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Frontiers in endocrinology 11.

  9. Wang X, Meng L, Su C et al (2020) Low free (but not total) 25-hydroxyvitamin D levels in subjects with normocalcemic hyperparathyroidism. Endocr Pract 26:174–178

    Article  PubMed  Google Scholar 

  10. Briggs AD, Kuan V, Greiller CL et al (2013) Longitudinal study of vitamin D metabolites after long bone fracture. J Bone Miner Res 28:1301–1307

    Article  CAS  PubMed  Google Scholar 

  11. Meller Y, Kestenbaum RS, Shany S et al (1985) Parathormone, calcitonin, and vitamin D metabolites during normal fracture healing in geriatric patients. Clin Orthop Relat Res:272–279.

  12. Yu-Yahiro JA, Michael RH, Dubin NH et al (2001) Serum and urine markers of bone metabolism during the year after hip fracture. J Am Geriatr Soc 49:877–883

    Article  CAS  PubMed  Google Scholar 

  13. St-Arnaud R, Naja RP (2011) Vitamin D metabolism, cartilage and bone fracture repair. Mol Cell Endocrinol 347:48–54

    Article  CAS  PubMed  Google Scholar 

  14. Kato A, Bishop JE, Norman AW (1998) Evidence for a 1 alpha,25-dihydroxyvitamin D3 receptor/binding protein in a membrane fraction isolated from a chick tibial fracture-healing callus. Biochem Biophys Res Commun 244:724–727

    Article  CAS  PubMed  Google Scholar 

  15. Lidor C, Dekel S, Edelstein S (1987) The metabolism of vitamin D3 during fracture healing in chicks. Endocrinology 120:389–393

    Article  CAS  PubMed  Google Scholar 

  16. Jingushi S, Iwaki A, Higuchi O et al (1998) Serum 1alpha, 25-dihydroxyvitamin D3 accumulates into the fracture callus during rat femoral fracture healing. Endocrinology 139:1467–1473

    Article  CAS  PubMed  Google Scholar 

  17. Meller Y, Kestenbaum RS, Mozes M et al (1984) Mineral and endocrine metabolism during fracture healing in dogs. Clin Orthop Relat Res 187:289–295

    Article  CAS  Google Scholar 

  18. Cappola AR, Hawkes WG, Blocher N et al (2011) The hormonal profile of hip fracture female patients differs from community-dwelling peers over a 1-year follow-up period. Osteoporos Int 22:339–344

    Article  CAS  PubMed  Google Scholar 

  19. Benhamou CL, Tourliere D, Gauvain JB et al (1995) Calciotropic hormones in elderly people with and without hip fracture. Osteoporos Int 5:103–107

    Article  CAS  PubMed  Google Scholar 

  20. Boonen S, Broos P, Verbeke G et al (1997) Calciotropic hormones and markers of bone remodeling in age-related (type II) femoral neck osteoporosis: alterations consistent with secondary hyperparathyroidism-induced bone resorption. J Gerontol A Biol Sci Med Sci 52:M286-293

    Article  CAS  PubMed  Google Scholar 

  21. Rosen C, Donahue LR, Hunter S et al (1992) The 24/25-kDa serum insulin-like growth factor-binding protein is increased in elderly women with hip and spine fractures. J Clin Endocrinol Metab 74:24–27

    CAS  PubMed  Google Scholar 

  22. LeBoff MS, Kohlmeier L, Hurwitz S et al (1999) Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA 281:1505–1511

    Article  CAS  PubMed  Google Scholar 

  23. Maruyama M, Rhee C, Utsunomiya T et al (2020) Modulation of the inflammatory response and bone healing. Frontiers in Endocrinology 11.

  24. Visser E, de Roos NM, Oosting E et al (2018) Association between preoperative vitamin D status and short-term physical performance after total hip arthroplasty: a prospective study. Ann Nutr Metab 73:252–260

    Article  CAS  PubMed  Google Scholar 

  25. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  CAS  PubMed  Google Scholar 

  26. Need AG, O’Loughlin PD, Morris HA et al (2008) Vitamin D metabolites and calcium absorption in severe vitamin D deficiency. J Bone Miner Res 23:1859–1863

    Article  CAS  PubMed  Google Scholar 

  27. Vieth R, Ladak Y, Walfish PG (2003) Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require more vitamin D. J Clin Endocrinol Metab 88:185–191

    Article  CAS  PubMed  Google Scholar 

  28. Reusch J, Ackermann H, Badenhoop K (2009) Cyclic changes of vitamin D and PTH are primarily regulated by solar radiation: 5-year analysis of a German (50 degrees N) population. Horm Metab Res 41:402–407

    Article  CAS  PubMed  Google Scholar 

  29. Holvik K, Meyer HE, Sogaard AJ et al (2006) Biochemical markers of bone turnover and their relation to forearm bone mineral density in persons of Pakistani and Norwegian background living in Oslo, Norway: the Oslo Health Study. Eur J Endocrinol 155:693–699

    Article  CAS  PubMed  Google Scholar 

  30. Christensen MH, Lien EA, Hustad S et al (2010) Seasonal and age-related differences in serum 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and parathyroid hormone in patients from Western Norway. Scand J Clin Lab Invest 70:281–286

    Article  CAS  PubMed  Google Scholar 

  31. Johansen A, Stone MD, O’Mahony MS et al (1997) Reliability of parathyroid hormone measurements in the period immediately following hip fracture. Age Ageing 26:175–178

    Article  CAS  PubMed  Google Scholar 

  32. Ng K, St John A, Bruce DG (1994) Secondary hyperparathyroidism, vitamin D deficiency and hip fracture: importance of sampling times after fracture. Bone Miner 25:103–109

    Article  CAS  PubMed  Google Scholar 

  33. Sato Y, Kaji M, Higuchi F et al (2001) Changes in bone and calcium metabolism following hip fracture in elderly patients. Osteoporos Int 12:445–449

    Article  CAS  PubMed  Google Scholar 

  34. Dubin NH, Monahan LK, Yu-Yahiro JA et al (1999) Serum concentrations of steroids, parathyroid hormone, and calcitonin in postmenopausal women during the year following hip fracture: effect of location of fracture and age. J Gerontol A Biol Sci Med Sci 54:M467-473

    Article  CAS  PubMed  Google Scholar 

  35. Walker AT, Stewart AF, Korn EA et al (1990) Effect of parathyroid hormone-like peptides on 25-hydroxyvitamin D-1 alpha-hydroxylase activity in rodents. Am J Physiol 258:E297-303

    CAS  PubMed  Google Scholar 

  36. Cosman F, Dawson-Hughes B, Wan X et al (2012) Changes in vitamin D metabolites during teriparatide treatment. Bone 50:1368–1371

    Article  CAS  PubMed  Google Scholar 

  37. Minisola S, Marin F, Kendler DL et al (2019) Serum 25-hydroxy-vitamin D and the risk of fractures in the teriparatide versus risedronate VERO clinical trial. Arch Osteoporos 14:10

    Article  PubMed  Google Scholar 

  38. Bischoff H, Stahelin HB, Vogt P et al (1999) Immobility as a major cause of bone remodeling in residents of a long-stay geriatric ward. Calcif Tissue Int 64:485–489

    Article  CAS  PubMed  Google Scholar 

  39. Theiler R, Stahelin HB, Tyndall A et al (1999) Calcidiol, calcitriol and parathyroid hormone serum concentrations in institutionalized and ambulatory elderly in Switzerland. Int J Vitam Nutr Res 69:96–105

    Article  CAS  PubMed  Google Scholar 

  40. Kolek OI, Hines ER, Jones MD et al (2005) 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042

    Article  CAS  PubMed  Google Scholar 

  41. Alshayeb H, Showkat A, Wall BM et al (2014) Activation of FGF-23 mediated vitamin D degradative pathways by cholecalciferol. J Clin Endocrinol Metab 99:E1830-1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alkalay D, Shany S, Dekel S (1989) Serum and bone vitamin D metabolites in elective patients and patients after fracture. J Bone Joint Surg Br 71:85–87

    Article  CAS  PubMed  Google Scholar 

  43. Resmini G, Migliaccio S, Dalle Carbonare L et al (2011) Differential characteristics of bone quality and bone turnover biochemical markers in patients with hip fragility fractures and hip osteoarthritis: results of a clinical pilot study. Aging Clin Exp Res 23:99–105

    Article  CAS  PubMed  Google Scholar 

  44. Norman AW, Okamura WH, Bishop JE et al (2002) Update on biological actions of 1alpha,25(OH)2-vitamin D3 (rapid effects) and 24R, 25(OH)2-vitamin D3. Mol Cell Endocrinol 197:1–13

    Article  CAS  PubMed  Google Scholar 

  45. Dirks NF, Ackermans MT, Lips P et al (2018) The when, what and how of measuring vitamin D metabolism in clinical medicine. Nutrients 10.

  46. MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76:1536–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vaculik J, Stepan JJ, Dungl P et al (2017) Secondary fracture prevention in hip fracture patients requires cooperation from general practitioners. Arch Osteoporos 12:49

    Article  PubMed  Google Scholar 

  48. Dekel S, Salama R, Edelstein S (1983) The effect of vitamin D and its metabolites on fracture repair in chicks. Clin Sci (Lond) 65:429–436

    Article  CAS  Google Scholar 

  49. Glendenning P, Chew GT, Seymour HM et al (2009) Serum 25-hydroxyvitamin D levels in vitamin D-insufficient hip fracture patients after supplementation with ergocalciferol and cholecalciferol. Bone 45:870–875

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz JB, Kane L, Bikle D (2016) Response of vitamin D concentration to vitamin D3 administration in older adults without sun exposure: a randomized double-blind trial. J Am Geriatr Soc 64:65–72

    Article  PubMed  PubMed Central  Google Scholar 

  51. Trummer C, Schwetz V, Pandis M et al (2017) Effects of vitamin D supplementation on IGF-1 and calcitriol: a randomized-controlled trial. Nutrients 9.

  52. Zittermann A, Ernst JB, Prokop S, Fuchs U, Dreier J, Kuhn J, Berthold HK, Pilz S, Gouni-Berthold I, Gummert JF (2018) Vitamin D supplementation and bone turnover in advanced heart failure: the EVITA trial. Osteoporos Int 29:579–586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Alena Adamová, Ludmila Hauptvoglová and Tereza Malá for their excellent technical assistance in this project.

Funding

This investigation was supported by the project for conceptual development of research organization 00023728 (Institute of Rheumatology, Prague, Czech Republic).

Author information

Authors and Affiliations

Authors

Contributions

JV and MB performed the clinical diagnoses, patients’ follow-up, and data interpretation. LW was responsible for biochemical analysis and data interpretation. KP performed the critical revision of the manuscript. JJS designed the study, was responsible for immunoassays and manuscript preparation. All authors revised the paper critically and approved the manuscript.

Corresponding author

Correspondence to J. J. Stepan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this study.

Ethical approval

The study was approved by the institutional review board of the Bulovka Hospital, Prague, Czech Republic. All procedures performed in the present study involving humans were in accordance with the ethical standards of the institution at which the studies were conducted.

Informed consent

All study participants were informed about the research, its purposes and requested to provide written consent of participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaculik, J., Wenchich, L., Bobelyak, M. et al. Decrease in serum calcitriol (but not free 25-hydroxyvitamin D) concentration in hip fracture healing. J Endocrinol Invest 44, 1847–1855 (2021). https://doi.org/10.1007/s40618-020-01489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01489-x

Keywords

Navigation