Skip to main content

Advertisement

Log in

R230C but not − 565C/T variant of the ABCA1 gene is associated with type 2 diabetes in Mexicans through an effect on lowering HDL-cholesterol levels

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Type 2 diabetes (T2D) and low serum concentration of high-density lipoprotein cholesterol (HDL-c) are common coexisting metabolic disorders. ABCA1 variants have been shown to be associated to these conditions. We sought to test the combined effect of two ABCA1 gene common variants, rs2422493 (− 565C > T) and rs9282541 (R230C) on HDL-c levels and T2D risk.

Methods

Path analysis was conducted in 3,303 Mexican-mestizos to assess the specific contributions of rs2422493 and rs9282541 ABCA1 variants, insulin resistance, waist-to-height ratio (WHtR), and age on HDL-c levels and T2D risk. Participants were classified into four groups according to their ABCA1 variants carrier status: (i) the reference group carried wild type alleles for both ABCA1 variants (−/−), (ii)  +/–  were carriers of rs2422493 but non-carriers of rs9282541, (iii) −/+ for carriers of rs9282541 but not carriers of rs2422493 and (iv) carriers of minor alleles for both SNPs (+/+). Principal components from two previous genome-wide association studies were used to control for ethnicity.

Results

We identified significant indirect effects on T2D risk mediated by HDL-c in groups −/+ and +/+ (β = 0.04; p = 0.03 and β = 0.06; p < 0.01, respectively) in comparison to the −/− reference group. Low concentrations of HDL-c were directly and significantly associated with increased T2D risk (β = −0.70; p < 0.01). WHtR, male gender, age, and insulin resistance were also associated with T2D risk (p < 0.05). There was no significant direct effect for any of the ABCA1 groups on T2D risk: p = 0.99, p = 0.58, and p = 0.91 for groups +/–, −/+, and +/+ respectively.

Conclusions

The ABCA1 rs9282541 (R230C) allele is associated with T2D in Mexicans through its effect on lowering HDL-c levels. This is the first report demonstrating that HDL-c levels act as an intermediate factor between an ABCA1 variant and T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aguilar-Salinas CA, Gómez-Pérez FJ, Rull J, Villalpando S, Barquera S et al (2010) Prevalence of dyslipidemias in the Mexican National Health and Nutrition Survey 2006. Salud Publica Mex 52(Suppl 1):S44–53. https://doi.org/10.1590/S0036-36342010000700008

    Article  PubMed  Google Scholar 

  2. Pedroza-Tobias A, Trejo-Valdivia B, Sanchez-Romero LM, Barquera S (2014) Classification of metabolic syndrome according to lipid alterations: analysis from the Mexican National Health and Nutrition Survey 2006. BMC Public Health 14:1056. https://doi.org/10.1186/1471-2458-14-1056

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S et al (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345:790–797. https://doi.org/10.1056/NEJMoa010492

    Article  CAS  PubMed  Google Scholar 

  4. Mahmood SS, Levy D, Vasan RS, Wang TJ (2014) The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383:999–1008. https://doi.org/10.1016/S0140-6736(13)61752-3

    Article  Google Scholar 

  5. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005. https://doi.org/10.1038/ng.2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ et al (2017) DIAbetes genetics replication and meta-analysis (DIAGRAM) consortium. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 66:2888–2902. https://doi.org/10.2337/db16-1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weissglas-Volkov D, Aguilar-Salinas CA, Nikkola E, Deere KA, Cruz-Bautista I et al (2013) Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J Med Genet 50:298–308. https://doi.org/10.1136/jmedgenet-2012-101461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ko A, Cantor RM, Weissglas-Volkov D, Nikkola E, Reddy PM et al (2014) Amerindian-specific regions under positive selection harbour new lipid variants in Latinos. Nat Commun 5:3983. https://doi.org/10.1038/ncomms4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flores-Dorantes T, Arellano-Campos O, Posadas-Sánchez R, Villarreal-Molina T, Medina-Urrutia A et al (2010) Association of R230C ABCA1 gene variant with low HDL-C levels and abnormal HDL subclass distribution in Mexican school-aged children. Clin Chim Acta 411:1214–1217. https://doi.org/10.1016/j.cca.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  10. Aguilar-Salinas CA, Canizales-Quinteros S, Rojas-Martínez R, Mehta R, Rodriguez-Guillén R et al (2011) The non-synonymous Arg230Cys variant (R230C) of the ATP-binding cassette transporter A1 is associated with low HDL cholesterol concentrations in Mexican adults: a population based nationwide study. Atherosclerosis 216:146–150. https://doi.org/10.1016/j.atherosclerosis.2010.10.049

    Article  CAS  PubMed  Google Scholar 

  11. Gamboa-Meléndez MA, Galindo-Gómez C, Juárez-Martínez L, Gómez FE, Diaz-Diaz E et al (2015) Novel association of the R230C variant of the ABCA1 gene with high triglyceride levels and low high-density lipoprotein cholesterol levels in Mexican school-age children with high prevalence of obesity. Arch Med Res 46:495–501. https://doi.org/10.1016/j.arcmed.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  12. León-Mimila P, Villamil-Ramírez H, Villalobos-Comparán M, Villarreal-Molina T, Romero-Hidalgo S et al (2013) Contribution of common genetic variants to obesity and obesity-related traits in Mexican children and adults. PLoS ONE 8:e70640. https://doi.org/10.1371/journal.pone.0070640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Villarreal-Molina MT, Flores-Dorantes MT, Arellano-Campos O, Villalobos-Comparan M, Rodríguez-Cruz M et al (2008) Association of the ATP-binding cassette transporter A1 R230C variant with early-onset type 2 diabetes in a Mexican population. Diabetes 57:509–513. https://doi.org/10.2337/db07-0484

    Article  CAS  PubMed  Google Scholar 

  14. Acuña-Alonzo V, Flores-Dorantes T, Kruit JK, Villarreal-Molina T, Arellano-Campos O et al (2010) A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Hum Mol Genet 19:2877–2885. https://doi.org/10.1093/hmg/ddq173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villarreal-Molina MT, Aguilar-Salinas CA, Rodríguez-Cruz M, Riaño D, Villalobos-Comparan M et al (2007) The ATP-binding cassette transporter A1 R230C variant affects HDL cholesterol levels and BMI in the Mexican population: association with obesity and obesity-related comorbidities. Diabetes 56:1881–1887. https://doi.org/10.2337/db06-0905

    Article  CAS  PubMed  Google Scholar 

  16. Kyriakou T, Hodgkinson C, Pontefract DE, Iyengar S, Howell WM et al (2005) Genotypic effect of the -565C%3eT polymorphism in the ABCA1 gene promoter on ABCA1 expression and severity of atherosclerosis. Arterioscler Thromb Vasc Biol 25:418–423. https://doi.org/10.1161/01.ATV.0000149379.72018.20

    Article  CAS  PubMed  Google Scholar 

  17. Nagao K, Tomioka M, Ueda K (2011) Function and regulation of ABCA1–membrane meso-domain organization and reorganization. FEBS J 278:3190–3203. https://doi.org/10.1111/j.1742-4658.2011.08170.x

    Article  CAS  PubMed  Google Scholar 

  18. VE Arnold K Dimitris 2015 High Density Lipoproteins Springer From Biological Understanding to Clinical Exploitation 10.1007/978-3-319-09665-0

  19. Li G, Gu HM, Zhang DW (2013) ATP-binding cassette transporters and cholesterol translocation. IUBMB Life 65:505–512. https://doi.org/10.1002/iub.1165

    Article  CAS  PubMed  Google Scholar 

  20. Lawn RM, Wade DP, Couse TL, Wilcox JN (2001) Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and atherosclerotic tissues. Arterioscler Thromb Vasc Biol 21:378–385. https://doi.org/10.1161/01.ATV.21.3.378

    Article  CAS  PubMed  Google Scholar 

  21. Kielar D, Dietmaier W, Langmann T, Aslanidis C, Probst M et al (2001) Rapid quantification of human ABCA1 mRNA in various cell types and tissues by real-time reverse transcription-PCR. Clin Chem 47:2089–2097

    Article  CAS  Google Scholar 

  22. Brunham LR, Kruit JK, Pape TD, Timmins JM, Reuwer AQ et al (2007) Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med 13:340–347. https://doi.org/10.1038/nm1546

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM et al (2005) Identifying individuals at high risk for diabetes: the atherosclerosis risk in communities study. Diabetes Care 28:2013–2018. https://doi.org/10.2337/diacare.28.8.2013

    Article  Google Scholar 

  24. Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM et al (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068–1074. https://doi.org/10.1001/archinte.167.10.1068

    Article  Google Scholar 

  25. Abbasi A, Corpeleijn E, Gansevoort RT, Gans RO, Hillege HL et al (2013) Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: the PREVEND study. J Clin Endocrinol Metab 98:E1352–E1359. https://doi.org/10.1210/jc.2013-1680

    Article  CAS  PubMed  Google Scholar 

  26. Rye KA, Barter PJ, Cochran BJ (2016) Apolipoprotein A-I interactions with insulin secretion and production. Curr Opin Lipidol 27:8–13. https://doi.org/10.1097/MOL.0000000000000253

    Article  CAS  PubMed  Google Scholar 

  27. Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F et al (2010) Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol 30:1642–1648. https://doi.org/10.1161/ATVBAHA.110.207373

    Article  CAS  PubMed  Google Scholar 

  28. SIGMA Type 2 Diabetes Consortium, Williams AL, Jacobs SB, Moreno-Macías H, Huerta-Chagoya A, Churchhouse C (2014) Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506:97–101. https://doi.org/10.1038/nature12828

    Article  CAS  Google Scholar 

  29. American Diabetes Association (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1):S62–S69. https://doi.org/10.2337/dc11-S062

    Article  CAS  PubMed Central  Google Scholar 

  30. Carlson RV, Boyd KM, Webb DJ (2004) The revision of the Declaration of Helsinki: past, present and future. Br J Clin Pharmacol 57:695–713. https://doi.org/10.1111/j.1365-2125.2004.02103.x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13:275–286. https://doi.org/10.1111/j.1467-789X.2011.00952.x

    Article  CAS  PubMed  Google Scholar 

  32. Myung J, Jung KY, Kim TH, Han E (2019) Assessment of the validity of multiple obesity indices compared with obesity-related co-morbidities. Public Health Nutr 18:1–9. https://doi.org/10.1017/S1368980019000090

    Article  Google Scholar 

  33. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Article  CAS  Google Scholar 

  34. Vanderweele TJ, Vansteelandt S (2010) Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol 172:1339–1348. https://doi.org/10.1093/aje/kwq332

    Article  PubMed  PubMed Central  Google Scholar 

  35. Raghavan S, Porneala B, McKeown N, Fox CS, Dupuis J et al (2015) Metabolic factors and genetic risk mediate familial type 2 diabetes risk in the Framingham heart study. Diabetologia 58:988–996. https://doi.org/10.1007/s00125-015-3498-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh A, Babyak M, Nolan DK, Brummett BH, Jiang R et al (2015) Gene by stress genome-wide interaction analysis and path analysis identify EBF1 as a cardiovascular and metabolic risk gene. Eur J Hum Genet 23:854–862. https://doi.org/10.1038/ejhg.2014.189

    Article  CAS  PubMed  Google Scholar 

  37. Vincent V, Thakkar H, Aggarwal S, Mridha AR, Ramakrishnan L, Singh A (2019) ATP-binding cassette transporter A1 (ABCA1) expression in adipose tissue and its modulation with insulin resistance in obesity. Diabetes Metab Syndr Obes 12:275–284. https://doi.org/10.2147/DMSO.S186565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muthén LK, & Muthén BO (1998–2017) Mplus User's Guide. Eighth Edition. Muthén & Muthén, Los Angeles.

  39. Regieli JJ, Doevendans PA, Grobbee DE, Zwinderman AH, van der Graaf Y, Kastelein JJ, Jukema JW (2011) ABCA1 impacts athero-thrombotic risk and 10-year survival in a contemporary secondary prevention setting. Atherosclerosis 218:457–463. https://doi.org/10.1016/j.atherosclerosis.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  40. Benton JL, Ding J, Tsai MY, Shea S, Rotter JI, Burke GL, Post W (2007) Associations between two common polymorphisms in the ABCA1 gene and subclinical atherosclerosis: multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 193:352–360. https://doi.org/10.1016/j.atherosclerosis.2006.06.024

    Article  CAS  PubMed  Google Scholar 

  41. Babashamsi MM, Halalkhor S, Moradi Firouzjah H, Parsian H, Jalali SF, Babashamsi M (2017) Association of ATP-binding cassette transporter A1 (ABCA1)-565 C/T gene polymorphism with hypoalphalipoproteinemia and serum lipids, IL-6 and CRP Levels. Avicenna J Med Biotechnol 9:38–43

    PubMed  PubMed Central  Google Scholar 

  42. Mahmoodi K, Kamali K, Ghaznavi H, Soltanpour MS (2018) The C-565T polymorphism (rs2422493) of the ATP-binding cassette transporter A1 gene contributes to the development and severity of coronary artery disease in an Iranian population. Oman Med J 33:309–315. https://doi.org/10.5001/omj.2018.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lutucuta S, Ballantyne CM, Elghannam H, Gotto AM Jr, Marian AJ (2001) Novel polymorphisms in promoter region of atp binding cassette transporter gene and plasma lipids, severity, progression, and regression of coronary atherosclerosis and response to therapy. Circ Res 88:969–973. https://doi.org/10.1161/hh0901.090301

    Article  CAS  PubMed  Google Scholar 

  44. Miranda-Lora AL, Cruz M, Molina-Díaz M, Gutiérrez J, Flores-Huerta S, Klünder-Klünder M (2017) Associations of common variants in the SLC16A11, TCF7L2, and ABCA1 genes with pediatric-onset type 2 diabetes and related glycemic traits in families: a case-control and case-parent trio study. Pediatr Diabetes 18:824–831. https://doi.org/10.1111/pedi.12497

    Article  CAS  PubMed  Google Scholar 

  45. Campbell DD, Parra MV, Duque C, Gallego N, Franco L, Tandon A et al (2012) Amerind ancestry, socioeconomic status and the genetics of type 2 diabetes in a Colombian population. PLoS ONE 7:e33570. https://doi.org/10.1371/journal.pone.0033570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haghvirdizadeh P, Ramachandran V, Etemad A, Heidari F, Ghodsian N, Bin Ismail N, Ismail P (2015) Association of ATP-binding cassette transporter A1 gene polymorphisms in Type 2 diabetes mellitus among Malaysians. J Diabetes Res. 2015:289846. https://doi.org/10.1155/2015/289846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hirano M, Nakanishi S, Kubota M, Maeda S, Yoneda M, Yamane K, Kira S, Sasaki H, Kohno N (2014) Low high-density lipoprotein cholesterol level is a significant risk factor for development of type 2 diabetes: data from the Hawaii-Los Angeles-Hiroshima study. J Diabetes Investig 5:501–506. https://doi.org/10.1111/jdi.12170

    Article  CAS  PubMed  Google Scholar 

  48. Villalobos-Comparán M, Antuna-Puente B, Villarreal-Molina MT, Canizales-Quinteros S, Velázquez-Cruz R, León-Mimila P et al (2017) Interaction between FTO rs9939609 and the Native American-origin ABCA1 rs9282541 affects BMI in the admixed Mexican population. BMC Med Genet 18:46. https://doi.org/10.1186/s12881-017-0410-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rangel-Baltazar E, Cuevas-Nasu L, Shamah-Levy T, Rodríguez-Ramírez S, Méndez-Gómez-Humarán I, Rivera JA (2019) Association between high waist-to-height ratio and cardiovascular risk among adults sampled by the 2016 half-way national health and nutrition survey in Mexico (ENSANUT MC 2016). Nutrients 11(6):E1402. https://doi.org/10.3390/nu11061402

    Article  CAS  PubMed  Google Scholar 

  50. Vergeer M, Brunham LR, Koetsveld J, Kruit JK, Verchere CB, Kastelein JJ, Hayden MR, Stroes ES (2010) Carriers of loss-of-function mutations in ABCA1 display pancreatic beta-cell dysfunction. Diabetes Care 33:869–874. https://doi.org/10.2337/dc09-1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brunham LR, Kruit JK, Verchere CB, Hayden MR (2008) Cholesterol in islet dysfunction and type 2 diabetes. J Clin Invest 118:403–408. https://doi.org/10.1172/JCI33296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cochran BJ, Bisoendial RJ, Hou L, Glaros EN, Rossy J, Thomas SR, Barter PJ, Rye KA (2014) Apolipoprotein A-I increases insulin secretion and production from pancreatic β-cells via a G-protein-cAMP-PKA-FoxO1-dependent mechanism. Arterioscler Thromb Vasc Biol 34:2261–2267. https://doi.org/10.1161/ATVBAHA.114.304131

    Article  CAS  PubMed  Google Scholar 

  53. von Eckardstein A, Widmann C (2014) High-density lipoprotein, beta cells, and diabetes. Cardiovasc Res 103:384–394. https://doi.org/10.1093/cvr/cvu143

    Article  CAS  Google Scholar 

  54. Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA et al (2009) High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119:2103–2111. https://doi.org/10.1161/CIRCULATIONAHA.108.843219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ana Ochoa-Guzmán is a PhD student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and she was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) fellowship 468294. We thank Saúl Cano-Colín, José Luis Ventura-Gallegos, Maribel Rodríguez-Torres, Salvador Ramírez and Irma Mitre for technical assistance.

Funding

We thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for financial support (Project 128877).

Author information

Authors and Affiliations

Authors

Contributions

AO-G and HM-M designed, analyzed data and wrote the manuscript. DG-Q, OC-T, MLO-S, YS-K, VO, ED-D, LM-H, AG, and OP-M recollected patient’s data and/or contributed to the manuscript. AZ-D and CAA-S designed and supervised the research and edited the manuscript. MTT-L designed, supervised the research and wrote the manuscript. MTT-L is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to M. T. Tusié-Luna.

Ethics declarations

Conflict of interest

The authors declare that there are not competing conflicts of interest.

Ethical approval

All procedures performed in human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments ethical standards. The study was approved by The Committee of Ethics and the Institutional Review Board of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ).

Informed consent

All the participants provided written informed consent before inclusion in the study. Participants did not receive any stipend for taking part in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Guzmán, A., Moreno-Macías, H., Guillén-Quintero, D. et al. R230C but not − 565C/T variant of the ABCA1 gene is associated with type 2 diabetes in Mexicans through an effect on lowering HDL-cholesterol levels. J Endocrinol Invest 43, 1061–1071 (2020). https://doi.org/10.1007/s40618-020-01187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01187-8

Keywords

Navigation