Skip to main content

Advertisement

Log in

Quantitative proteomics analysis of sporadic parathyroid adenoma tissue samples

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective

Molecular pathogenesis of parathyroid tumors is incompletely understood. Identification of novel molecules and understanding their role in parathyroid tumorigenesis by proteomics approach would be informative with potential clinical implications.

Method

Adenomatous (n = 5) and normal (n = 2) parathyroid tissue lysates were analyzed for protein profile by LC–MS/MS method and the proteins were classified using bioinformatics tools such as PANTHER and toppfun functional enrichment tool. Identified proteins were further validated by western blotting and qRT-PCR (n = 20).

Result

Comparative proteomics analysis revealed that a total of 206 proteins (74 upregulated and 132 downregulated) were differentially expressed (≥ twofold change) in adenomas. Bioinformatics analysis revealed that 48 proteins were associated with plasma membrane, 49 with macromolecular complex, 39 were cytoplasm, 38 were organelle related, 21 were cell junction and 10 were extracellular proteins. These proteins belonged to a diverse protein family such as enzymes, transcription factors, cell signalling, cell adhesion, cytoskeleton proteins, receptors, and calcium-binding proteins. The major biological processes predicted for the proteins were a cellular, metabolic and developmental process, cellular localization, and biological regulation. The differentially expressed proteins were found to be associated with MAPK, phospholipase C (PLC) and phosphatidylinositol (PI) signalling pathways, and with chromatin organization. Western blot and qRT-PCR analysis of three proteins (DNAJC2, ACO2, and PRDX2) validated the LC–MS/MS findings.

Conclusion

This exploratory study demonstrates the feasibility of proteomics approach in finding the dysregulated proteins in benign parathyroid adenomas, and our preliminary results suggest that MAPK, PLC and PI signalling pathways and chromatin organization are involved in parathyroid tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fraser WD (2009) Hyperparathyroidism. Lancet 374:145–158

    Article  CAS  PubMed  Google Scholar 

  2. Bilezikian JP, Brandi ML, Eastell R, Silverberg SJ, Udelsman R, Marcocci C, Potts JT Jr (2014) Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International workshop. J Clin Endocrinol Metab 99:3561–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhadada SK, Arya AK, Mukhopadhyay S, Khadgawat R, Sukumar S, Lodha S, Singh DN, Sathya A, Singh P, Bhansali A (2018) Primary hyperparathyroidism: insights from the Indian PHPT registry. J Bone Miner Metab 36:238–245

    Article  CAS  PubMed  Google Scholar 

  4. Arnold A, Shattuck TM, Mallya SM, Krebs LJ, Costa J, Gallagher J, Wild Y, Saucier K (2002) Molecular pathogenesis of primary hyperparathyroidism. J Bone Miner Res 17(Suppl 2):N30–N36

    CAS  PubMed  Google Scholar 

  5. Varshney S, Bhadada SK, Sachdeva N, Arya AK, Saikia UN, Behera A, Rao SD (2013) Methylation status of the CpG islands in vitamin D and calcium-sensing receptor gene promoters does not explain the reduced gene expressions in parathyroid adenomas. J Clin Endocrinol Metab 98:E1631–E1635

    Article  CAS  PubMed  Google Scholar 

  6. Varshney S, Bhadada SK, Saikia UN, Sachdeva N, Behera A, Arya AK, Sharma S, Bhansali A, Mithal A, Rao SD (2013) Simultaneous expression analysis of vitamin D receptor, calcium-sensing receptor, cyclin D1, and PTH in symptomatic primary hyperparathyroidism in Asian Indians. Eur J Endocrinol 169:109–116

    Article  CAS  PubMed  Google Scholar 

  7. Rao SD, Bhadada SK, Parfitt AM (2015) Parathyroid growth: normal and abnormal. In: Bilezikian JP (ed) The parathyroids, 3rd edn. Academic Press, San Diego, pp 255–278

    Chapter  Google Scholar 

  8. Carling T (2001) Molecular pathology of parathyroid tumors. Trends Endocrinol Metab 12:53–58

    Article  CAS  PubMed  Google Scholar 

  9. de Hoog CL, Mann M (2004) Proteomics. Annu Rev Genomics Hum Genet 5:267–293

    Article  CAS  PubMed  Google Scholar 

  10. Kocher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4:807–815

    Article  CAS  PubMed  Google Scholar 

  11. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98:15149–15154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giusti L, Cetani F, Ciregia F, Da Valle Y, Donadio E, Giannaccini G, Banti C, Pardi E, Saponaro F, Basolo F, Berti P, Miccoli P, Pinchera A, Marcocci C, Lucacchini A (2011) A proteomic approach to study parathyroid glands. Mol BioSyst 7:687–699

    Article  CAS  PubMed  Google Scholar 

  13. Donadio E, Giusti L, Cetani F, Da Valle Y, Ciregia F, Giannaccini G, Pardi E, Saponaro F, Torregrossa L, Basolo F, Marcocci C, Lucacchini A (2011) Evaluation of formalin-fixed paraffin-embedded tissues in the proteomic analysis of parathyroid glands. Proteome Sci 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varshney S, Bhadada SK, Arya AK, Sharma S, Behera A, Bhansali A, Rao SD (2014) Changes in parathyroid proteome in patients with primary hyperparathyroidism due to sporadic parathyroid adenomas. Clin Endocrinol (Oxf) 81:614–620

    Article  CAS  Google Scholar 

  15. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas PD (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–W311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  PubMed  Google Scholar 

  18. Arya AK, Bhadada SK, Singh P, Sachdeva N, Saikia UN, Dahiya D, Behera A, Bhansali A, Rao SD (2017) Promoter hypermethylation inactivates CDKN2A, CDKN2B and RASSF1A genes in sporadic parathyroid adenomas. Sci Rep 7:3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  20. Broad LM, Braun FJ, Lievremont JP, Bird GS, Kurosaki T, Putney JW Jr (2001) Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem 276:15945–15952

    Article  CAS  PubMed  Google Scholar 

  21. Putney JW, Tomita T (2012) Phospholipase C signaling and calcium influx. Adv Biol Regul 52:152–164

    Article  CAS  PubMed  Google Scholar 

  22. Bittremieux M, Parys JB, Pinton P, Bultynck G (2016) ER functions of oncogenes and tumor suppressors: modulators of intracellular Ca(2+) signaling. Biochim Biophys Acta 1863:1364–1378

    Article  CAS  PubMed  Google Scholar 

  23. Balbas-Martinez C, Sagrera A, Carrillo-de-Santa-Pau E, Earl J, Marquez M, Vazquez M, Lapi E, Castro-Giner F, Beltran S, Bayes M, Carrato A, Cigudosa JC, Dominguez O, Gut M, Herranz J, Juanpere N, Kogevinas M, Langa X, Lopez-Knowles E, Lorente JA, Lloreta J, Pisano DG, Richart L, Rico D, Salgado RN, Tardon A, Chanock S, Heath S, Valencia A, Losada A, Gut I, Malats N, Real FX (2013) Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nat Genet 45:1464–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solomon DA, Kim JS, Bondaruk J, Shariat SF, Wang ZF, Elkahloun AG, Ozawa T, Gerard J, Zhuang D, Zhang S, Navai N, Siefker-Radtke A, Phillips JJ, Robinson BD, Rubin MA, Volkmer B, Hautmann R, Kufer R, Hogendoorn PC, Netto G, Theodorescu D, James CD, Czerniak B, Miettinen M, Waldman T (2013) Frequent truncating mutations of STAG2 in bladder cancer. Nat Genet 45:1428–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor CF, Platt FM, Hurst CD, Thygesen HH, Knowles MA (2014) Frequent inactivating mutations of STAG2 in bladder cancer are associated with low tumour grade and stage and inversely related to chromosomal copy number changes. Hum Mol Genet 23:1964–1974

    Article  CAS  PubMed  Google Scholar 

  26. Tham E, Lindstrand A, Santani A, Malmgren H, Nesbitt A, Dubbs HA, Zackai EH, Parker MJ, Millan F, Rosenbaum K, Wilson GN, Nordgren A (2015) Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am J Hum Genet 96:507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brough R, Bajrami I, Vatcheva R, Natrajan R, Reis-Filho JS, Lord CJ, Ashworth A (2012) APRIN is a cell cycle specific BRCA2-interacting protein required for genome integrity and a predictor of outcome after chemotherapy in breast cancer. EMBO J 31:1160–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mannini L, Cucco F, Quarantotti V, Amato C, Tinti M, Tana L, Frattini A, Delia D, Krantz ID, Jessberger R, Musio A (2015) SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins. Sci Rep 5:18472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Agaimy A, Bertz S, Cheng L, Hes O, Junker K, Keck B, Lopez-Beltran A, Stockle M, Wullich B, Hartmann A (2016) Loss of expression of the SWI/SNF complex is a frequent event in undifferentiated/dedifferentiated urothelial carcinoma of the urinary tract. Virchows Arch 469:321–330

    Article  CAS  PubMed  Google Scholar 

  30. Agaimy A, Haller F, Frohnauer J, Schaefer IM, Strobel P, Hartmann A, Stoehr R, Kloppel G (2015) Pancreatic undifferentiated rhabdoid carcinoma: KRAS alterations and SMARCB1 expression status define two subtypes. Mod Pathol 28:248–260

    Article  CAS  PubMed  Google Scholar 

  31. Agaimy A, Rau TT, Hartmann A, Stoehr R (2014) SMARCB1 (INI1)-negative rhabdoid carcinomas of the gastrointestinal tract: clinicopathologic and molecular study of a highly aggressive variant with literature review. Am J Surg Pathol 38:910–920

    Article  PubMed  Google Scholar 

  32. Strehl JD, Wachter DL, Fiedler J, Heimerl E, Beckmann MW, Hartmann A, Agaimy A (2015) Pattern of SMARCB1 (INI1) and SMARCA4 (BRG1) in poorly differentiated endometrioid adenocarcinoma of the uterus: analysis of a series with emphasis on a novel SMARCA4-deficient dedifferentiated rhabdoid variant. Ann Diagn Pathol 19:198–202

    Article  PubMed  Google Scholar 

  33. Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM (1996) Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 7:1455–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Desprez PY, Lin CQ, Thomasset N, Sympson CJ, Bissell MJ, Campisi J (1998) A novel pathway for mammary epithelial cell invasion induced by the helix-loop-helix protein Id-1. Mol Cell Biol 18:4577–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Resto VA, Caballero OL, Buta MR, Westra WH, Wu L, Westendorf JM, Jen J, Hieter P, Sidransky D (2000) A putative oncogenic role for MPP11 in head and neck squamous cell cancer. Cancer Res 60:5529–5535

    CAS  PubMed  Google Scholar 

  36. Tsui KH, Feng TH, Lin YF, Chang PL, Juang HH (2011) p53 downregulates the gene expression of mitochondrial aconitase in human prostate carcinoma cells. Prostate 71:62–70

    Article  CAS  PubMed  Google Scholar 

  37. Parsyan A, Shahbazian D, Martineau Y, Petroulakis E, Alain T, Larsson O, Mathonnet G, Tettweiler G, Hellen CU, Pestova TV, Svitkin YV, Sonenberg N (2009) The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. Proc Natl Acad Sci USA 106:22217–22222

    Article  PubMed  PubMed Central  Google Scholar 

  38. He M, Pei Z, Mohsen AW, Watkins P, Murdoch G, Van Veldhoven PP, Ensenauer R, Vockley J (2011) Identification and characterization of new long chain acyl-CoA dehydrogenases. Mol Genet Metab 102:418–429

    Article  CAS  PubMed  Google Scholar 

  39. Akpinar G, Kasap M, Canturk NZ, Zulfigarova M, Islek EE, Guler SA, Simsek T, Canturk Z (2017) Proteomics Analysis of Tissue Samples Reveals Changes in Mitochondrial Protein Levels in Parathyroid Hyperplasia over Adenoma. Cancer Genom Proteom 14:197–211

    Article  CAS  Google Scholar 

  40. Koh J, Hogue JA, Roman SA, Scheri RP, Fradin H, Corcoran DL, Sosa JA (2018) Transcriptional profiling reveals distinct classes of parathyroid tumors in PHPT. Endocr Relat Cancer 25:407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was partially funded by Indian Council of Medical Research (ICMR), New Delhi (IRIS Id 2011-15750). AA is grateful to University Grants Commission (UGC), New Delhi, India, for providing the research fellowship. PS and GK are thankful to Indian Council of Medical Research, New Delhi, India, for fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AA, PS and GK performed the molecular experiments. AA, SB, and SS analyzed the data. SB recruited the subjects, DD, and AB performed the surgery and US performed the histopathological analysis of the tumors. AA, SB, and SDR conceptualized the idea and wrote the manuscript. SDR and MB critically reviewed and edited the manuscript. All authors read and approved the submitted version of the manuscript.

Corresponding author

Correspondence to S. K. Bhadada.

Ethics declarations

Conflict of interest

The authors exclude any conflict of interests.

Ethical approval

The research protocol was approved by Institutional ethics committee, PGIMER Chandigarh. The study was conducted in accordance with approved protocol.

Informed consent

Informed written consent was taken from each subject prior to the recruitment.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, A.K., Bhadada, S.K., Singh, P. et al. Quantitative proteomics analysis of sporadic parathyroid adenoma tissue samples. J Endocrinol Invest 42, 577–590 (2019). https://doi.org/10.1007/s40618-018-0958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-018-0958-1

Keywords

Navigation