Skip to main content

Advertisement

Log in

RNASEH1 gene variants are associated with autoimmune type 1 diabetes in Colombia

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

In a previous work, we found linkage and association of type 1 diabetes (T1D) to a 12 known gene region at chromosome 2p25 in Colombian families. Here, we present further work on this candidate region.

Materials and methods

Seventeen SNPs located on the 12 candidate genes, in 100 familial trios set, were tested by ARMS–tetraprimer–PCR or PCR–RFLP. Five extra SNPs in the vicinity of rs10186193 were typed. A replica phase included 97 novel familial trios, in whom diabetes-related auto-antibodies (AABs) were tested in sera of the patients. In addition to transmission disequilibrium tests, haplotype analyses were carried out using the unphased software.

Results

SNP rs10186193 (at RNASEH1 gene) showed association with T1D (P = 0.005). The additional five SNPs revealed that rs7607888 (P = 2.03 × 10−7), rs55981318 (P = 0.018), and rs1136545 (P = 1.93 × 10−9) were also associated with T1D. Haplotype analysis showed association for rs55981318rs10186193 (P = 0.0005), rs7563960rs7607888 (P = 0.0007), rs7607888rs1136545 (P = 9.21 × 10−10), and rs1136545rs11538545 (P = 6.67 × 10−8). In contrast, the new set of 97 familial trios tested for SNPs rs55981318, rs10186193, and rs7607888 did not support the previous finding; however, by combining the sample (197 trios), evidence of association of T1D with rs55981318 and rs7607888 was conclusive. In addition, a two-loci haplotype analysis of the combined sample showed significant association of RNASEH1 with T1D (P = 3.1 × 10−5).

Conclusion

In conclusion, our analyses suggest that RNASEH1 gene variants associate with susceptibility/protection to T1D in Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. ADA (2016) Classification and diagnosis of diabetes. Diabetes Care 39:S13–S22

    Article  CAS  Google Scholar 

  2. Knip M (2012) Descriptive epidemiology of type 1 diabetes—is it still in? Diabetologia 55(5):1227–1230

    Article  PubMed  CAS  Google Scholar 

  3. Pundziute-Lyckå A, Dahlquist G, Nyström L, Arnqvist H, Björk E, Blohmé G, Bolinder J, Eriksson JW, Sundkvist G, Ostman J (2002) The incidence of type I diabetes has not increased but shifted to a younger age at diagnosis in the 0–34 years group in Sweden 1983–1998. Diabetologia 45:783–791

    Article  PubMed  Google Scholar 

  4. Tuomilehto J (2013) The emerging global epidemic of type 1 diabetes. Curr Diabetes Rep 13:795–804

    Article  CAS  Google Scholar 

  5. Barnett AH, Eff C, Leslie RD, Pyke DA (1981) Diabetes in identical twins. A study of 200 pairs. Diabetologia 20:87–93

    Article  PubMed  CAS  Google Scholar 

  6. Ziegler A-G, Pflueger M, Winkler C, Achenbach P, Akolkar B, Krischer JP, Bonifacio E (2011) Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children. J Autoimmun 37:3–7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455

    Article  PubMed  CAS  Google Scholar 

  8. Tuomilehto J, Podar T, Tuomilehto-Wolf E, Virtala E (1995) Evidence for importance of gender and birth cohort for risk of IDDM in offspring of IDDM parents. Diabetologia 38:975–982

    Article  PubMed  CAS  Google Scholar 

  9. Gao S, Jia S, Hessner MJ, Wang X (2012) Predicting disease-related subnetworks for type 1 diabetes using a new network activity score. OMICS 16:566–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fløyel T, Kaur S, Pociot F (2015) Genes affecting β-cell function in type 1 diabetes. Curr Diabetes Rep 15:97

    Article  CAS  Google Scholar 

  11. Bottini N, Vang T, Cucca F, Mustelin T (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18:207–213

    Article  PubMed  CAS  Google Scholar 

  12. Královicová J, Gaunt TR, Rodriguez S, Wood PJ, Day INM, Vorechovsky I (2006) Variants in the human insulin gene that affect pre-mRNA splicing: is − 23HphI a functional single nucleotide polymorphism at IDDM2? Diabetes 55:260–264

    Article  PubMed  Google Scholar 

  13. Marron MP, Raffel LJ, Garchon HJ et al (1997) Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. Hum Mol Genet 6:1275–1282

    Article  PubMed  CAS  Google Scholar 

  14. Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39:857–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Alcina A, Fedetz M, Ndagire D et al (2009) IL2RA/CD25 gene polymorphisms: uneven association with multiple sclerosis (MS) and type 1 diabetes (T1D). PLoS One 4:e4137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rodríguez A, Alfaro JM, Balthazar V, Pineda Trujillo N (2015) Association analysis of PTPN22, CTLA4 and IFIH1 genes with type 1 diabetes in Colombian families. J Diabetes 7:402–410

    Article  PubMed  CAS  Google Scholar 

  17. Pineda-Trujilo N, Uribe F, Montoya F et al (2010) Chromosome region 2p25 is linked and associated with type 1 diabetes in Colombia. J Genet 89:457–461

    Article  PubMed  Google Scholar 

  18. Filippi C, von Herrath M (2005) How viral infections affect the autoimmune process leading to type 1 diabetes. Cell Immunol 233:125–132

    Article  PubMed  CAS  Google Scholar 

  19. Günther C, Kind B, Reijns MAM et al (2015) Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Investig 125:413–424

    Article  PubMed  Google Scholar 

  20. Flodström-Tullberg M, Hultcrantz M, Stotland A, Maday A, Tsai D, Fine C, Williams B, Silverman R, Sarvetnick N (2005) RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. J Immunol 174:1171–1177

    Article  PubMed  Google Scholar 

  21. Ye S, Dhillon S, Ke X, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29:E88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dudbridge F (2008) Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66:87–98

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  25. Chang CC, Huang CN, Chuang LM (1998) Autoantibodies to thyroid peroxidase in patients with type 1 diabetes in Taiwan. Eur J Endocrinol 139:44–48

    Article  PubMed  CAS  Google Scholar 

  26. Gutiérrez-achury J, Balthazar-gonzález V, Bedoya-berrío G, Ruíz-linares A, Uribe-londoño F, Alfaro JM, Pineda-Trujillo N (2009) Association of the TPO gene in Colombian families with type 1 diabetes. Iatreia 22:323–329

    Google Scholar 

  27. Ylipaasto P, Klingel K, Lindberg AM, Otonkoski T, Kandolf R, Hovi T, Roivainen M (2004) Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47:225–239

    Article  PubMed  CAS  Google Scholar 

  28. Jenson AB, Rosenberg HS, Notkins AL (1980) Pancreatic islet-cell damage in children with fatal viral infections. Lancet 2:354–358

    PubMed  CAS  Google Scholar 

  29. ten Asbroek ALMA, van Groenigen M, Jakobs ME, Koevoets C, Janssen B, Baas F (2002) Ribonuclease H1 maps to chromosome 2 and Has at least three pseudogene loci in the human genome. Genomics 79:818–823

    Article  PubMed  CAS  Google Scholar 

  30. Crow YJ, Chase DS, Lowenstein Schmidt J et al (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167A:296–312

    Article  PubMed  CAS  Google Scholar 

  31. Rice GI, del Toro Duany Y, Jenkinson EM et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46:503–509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tanaka D, Nagashima K, Sasaki M, Yamada C, Funakoshi S, Akitomo K, Takenaka K, Harada K, Koizumi A, Inagaki N (2011) GCKR mutations in Japanese families with clustered type 2 diabetes. Mol Genet Metab 102:453–460

    Article  PubMed  CAS  Google Scholar 

  33. Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Qiu Y-H, Deng F-Y, Li M-J, Lei S-F (2014) Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis. J Diabetes Investig 5:649–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gravel S, Zakharia F, Moreno-Estrada A et al (2013) Reconstructing Native American migrations from whole-genome and whole-exome data. PLoS Genet 9:e1004023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the patients and their families for participating in this study. This study was funded by a Colciencias Grant # 1115-343-19156 and a CODI-Universidad de Antioquia Grant # 8704-2449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pineda-Trujillo.

Ethics declarations

Conflict of interest

We do not have a conflict of interest to declare, related to this study.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Informed consent was obtained from all participants included in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 8 kb)

Supplementary material 2 (XLSX 6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda-Trujillo, N., Rodríguez-Acevedo, A., Rodríguez, A. et al. RNASEH1 gene variants are associated with autoimmune type 1 diabetes in Colombia. J Endocrinol Invest 41, 755–764 (2018). https://doi.org/10.1007/s40618-017-0797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0797-5

Keywords

Navigation