Skip to main content

Advertisement

Log in

Deiodinases and stem cells: an intimate relationship

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Thyroid hormone is a major determinant of tissue functions in vivo. The deiodinase family controls the tissue-specific activation or inactivation of intracellular thyroid hormones. Precise control of the T3-dependent transcriptional program is required by multiple cell systems, including the stem cell. In this context, the identification of a close connection between thyroid hormones and different signal pathways involved in the control of stem cell functions suggested that the deiodinases may play a role in the definition of stem cell biology and physiology. Stem cells have an unlimited self-renewal capacity and the potential to differentiate into different types of mature cells. Deciphering how all these events are achieved, how the T3 signal is controlled and integrated in stem cells and their niches, and how it can impact on them is essentially unknown and represents a challenge for coming years. In this review, I will explore the role played by the deiodinases in the modulation of the TH signal in stem cells of adult tissues, namely muscle and intestine, and how their actions control the delicate balance among self-renewal, proliferation and differentiation. Elucidation of the molecular mechanisms presiding thyroid hormone action in stem cells may reveal therapeutic potential, for example in the fields of regenerative diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marsili A, Zavacki AM, Harney JW, Larsen PR (2011) Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J Endocrinol Invest 34(5):395–407. doi:10.1007/BF03347465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89

    Article  CAS  PubMed  Google Scholar 

  3. Canettieri G, Franchi A, Sibilla R, Guzman E, Centanni M (2004) Functional characterisation of the CRE/TATA box unit of type 2 deiodinase gene promoter in a human choriocarcinoma cell line. J Mol Endocrinol 33(1):51–58

    Article  CAS  PubMed  Google Scholar 

  4. Canettieri G, Franchi A, Guardia MD, Morantte I, Santaguida MG, Harney JW, Larsen PR, Centanni M (2008) Activation of thyroid hormone is transcriptionally regulated by epidermal growth factor in human placenta-derived JEG3 cells. Endocrinology 149(2):695–702. doi:10.1210/en.2007-0779

    Article  CAS  PubMed  Google Scholar 

  5. Luongo C, Ambrosio R, Salzano S, Dlugosz AA, Missero C, Dentice M (2014) The sonic hedgehog-induced type 3 deiodinase facilitates tumorigenesis of basal cell carcinoma by reducing Gli2 inactivation. Endocrinology 155(6):2077–2088. doi:10.1210/en.2013-2108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dentice M, Luongo C, Ambrosio R, Sibilio A, Casillo A, Iaccarino A, Troncone G, Fenzi G, Larsen PR, Salvatore D (2012) beta-Catenin regulates deiodinase levels and thyroid hormone signaling in colon cancer cells. Gastroenterology 143(4):1037–1047. doi:10.1053/j.gastro.2012.06.042

    Article  CAS  PubMed  Google Scholar 

  7. Baldwin KM, Haddad F (2001) Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 1985 90(1):345–357

    Article  CAS  PubMed  Google Scholar 

  8. Simonides WS, van Hardeveld C (2008) Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 18(2):205–216. doi:10.1089/thy.2007.0256

    Article  CAS  PubMed  Google Scholar 

  9. McIntosh LM, Pernitsky AN, Anderson JE (1994) The effects of altered metabolism (hypothyroidism) on muscle repair in the mdx dystrophic mouse. Muscle Nerve 17(4):444–453. doi:10.1002/mus.880170413

    Article  CAS  PubMed  Google Scholar 

  10. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786

    Article  CAS  PubMed  Google Scholar 

  11. Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283. doi:10.1006/dbio.1997.8721

    Article  CAS  PubMed  Google Scholar 

  12. Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199(4):326–337. doi:10.1002/aja.1001990407

    Article  CAS  PubMed  Google Scholar 

  13. Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312. doi:10.1002/jcp.1041650211

    Article  CAS  PubMed  Google Scholar 

  14. Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296(1):183–190

    Article  CAS  PubMed  Google Scholar 

  15. Gnocchi VF, White RB, Ono Y, Ellis JA, Zammit PS (2009) Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One 4(4):e5205. doi:10.1371/journal.pone.0005205

    Article  PubMed  PubMed Central  Google Scholar 

  16. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151(6):1221–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McLoon LK, Wirtschafter J (2003) Activated satellite cells in extraocular muscles of normal adult monkeys and humans. Invest Ophthalmol Vis Sci 44(5):1927–1932

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dentice M, Marsili A, Ambrosio R, Guardiola O, Sibilio A, Paik JH, Minchiotti G, DePinho RA, Fenzi G, Larsen PR, Salvatore D (2010) The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest 120(11):4021–4030. doi:10.1172/JCI43670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gibson MC, Schultz E (1982) The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 202(3):329–337. doi:10.1002/ar.1092020305

    Article  CAS  PubMed  Google Scholar 

  20. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117(4):421–426

    Article  CAS  PubMed  Google Scholar 

  21. Hu P, Geles KG, Paik JH, DePinho RA, Tjian R (2008) Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 15(4):534–546. doi:10.1016/j.devcel.2008.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S (2012) A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148(1–2):112–125. doi:10.1016/j.cell.2011.11.049

    Article  CAS  PubMed  Google Scholar 

  23. Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S (2012) A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30(2):243–252. doi:10.1002/stem.775

    Article  CAS  PubMed  Google Scholar 

  24. Schmalbruch H, Lewis DM (2000) Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve 23(4):617–626

    Article  CAS  PubMed  Google Scholar 

  25. Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224(1):7–16. doi:10.1002/jcp.22127

    PubMed  Google Scholar 

  26. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a008342

    PubMed  PubMed Central  Google Scholar 

  27. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646. doi:10.1242/dev.067595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637. doi:10.1242/dev.064162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331. doi:10.1101/sqb.2008.73.064

    Article  CAS  PubMed  Google Scholar 

  30. Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10(5):504–514. doi:10.1016/j.stem.2012.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15(12):666–673. doi:10.1016/j.tcb.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  32. Dentice M, Ambrosio R, Damiano V, Sibilio A, Luongo C, Guardiola O, Yennek S, Zordan P, Minchiotti G, Colao A, Marsili A, Brunelli S, Del Vecchio L, Larsen PR, Tajbakhsh S, Salvatore D (2014) Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell metabolism 20(6):1038–1048. doi:10.1016/j.cmet.2014.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aranda A, Martinez-Iglesias O, Ruiz-Llorente L, Garcia-Carpizo V, Zambrano A (2009) Thyroid receptor: roles in cancer. Trends Endocrinol Metab 20(7):318–324. doi:10.1016/j.tem.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  34. Khurana TS, Davies KE (2003) Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2(5):379–390. doi:10.1038/nrd1085

    Article  CAS  PubMed  Google Scholar 

  35. McArdle A, Helliwell TR, Beckett GJ, Catapano M, Davis A, Jackson MJ (1998) Effect of propylthiouracil-induced hypothyroidism on the onset of skeletal muscle necrosis in dystrophin-deficient mdx mice. Clin Sci (Lond) 95(1):83–89

    Article  CAS  Google Scholar 

  36. King DB, Entrikin RK (1991) Thyroidal involvement in the expression of avian muscular dystrophy. Life Sci 48(9):909–916

    Article  CAS  PubMed  Google Scholar 

  37. McIntosh LM, Anderson JE (1995) Hypothyroidism prolongs and increases mdx muscle precursor proliferation and delays myotube formation in normal and dystrophic limb muscle. Biochem Cell Biol 73(3–4):181–190

    Article  CAS  PubMed  Google Scholar 

  38. Anderson JE, Liu L, Kardami E (1994) The effects of hyperthyroidism on muscular dystrophy in the mdx mouse: greater dystrophy in cardiac and soleus muscle. Muscle Nerve 17(1):64–73. doi:10.1002/mus.880170109

    Article  CAS  PubMed  Google Scholar 

  39. Cooper RN, Butler-Browne GS, Mouly V (2006) Human muscle stem cells. Curr Opin Pharmacol 6(3):295–300. doi:10.1016/j.coph.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  40. Schreiber AM, Cai L, Brown DD (2005) Remodeling of the intestine during metamorphosis of Xenopus laevis. Proc Natl Acad Sci USA 102(10):3720–3725. doi:10.1073/pnas.0409868102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai L, Brown DD (2004) Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis. Dev Biol 266(1):87–95

    Article  CAS  PubMed  Google Scholar 

  42. Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A (2011) The development of the adult intestinal stem cells: insights from studies on thyroid hormone-dependent amphibian metamorphosis. Cell Biosci 1(1):30. doi:10.1186/2045-3701-1-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fre S, Pallavi SK, Huyghe M, Lae M, Janssen KP, Robine S, Artavanis-Tsakonas S, Louvard D (2009) Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci USA 106(15):6309–6314. doi:10.1073/pnas.0900427106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Catalano V, Dentice M, Ambrosio R, Luongo C, Carollo R, Benfante A, Todaro M, Stassi G, Salvatore D (2016) Activated thyroid hormone promotes differentiation and chemotherapeutic sensitization of colorectal cancer stem cells by regulating Wnt and BMP4 signaling. Cancer Res 76(5):1237–1244. doi:10.1158/0008-5472.CAN-15-1542

    Article  CAS  PubMed  Google Scholar 

  45. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044):964–968. doi:10.1038/nature03589

    Article  CAS  PubMed  Google Scholar 

  46. Sirakov M, Boussouar A, Kress E, Frau C, Lone IN, Nadjar J, Angelov D, Plateroti M (2015) The thyroid hormone nuclear receptor TRalpha1 controls the Notch signaling pathway and cell fate in murine intestine. Development 142(16):2764–2774. doi:10.1242/dev.121962

    Article  CAS  PubMed  Google Scholar 

  47. Miladpour B, Rasti M, Owji AA, Mostafavipour Z, Khoshdel Z, Noorafshan A, Zal F (2016) Quercetin potentiates transdifferentiation of bone marrow mesenchymal stem cells into the beta cells in vitro. J Endocrinol Invest. doi:10.1007/s40618-016-0592-8

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Ministero Italiano dell’Università e Ricerca (MIUR) (Grant No. 2012Z3F7HE) and the Horizon 2020 research and innovation programme under grant agreement No 666869-THYRAGE. I am indebted to Jean Ann Gilder (Scientific Communication srl., Naples, Italy) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Salvatore.

Ethics declarations

Conflicts of interest

The author states the absence of any conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvatore, D. Deiodinases and stem cells: an intimate relationship. J Endocrinol Invest 41, 59–66 (2018). https://doi.org/10.1007/s40618-017-0737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0737-4

Keywords

Navigation