Skip to main content

Advertisement

Log in

17β-Estradiol in the systemic circulation derives mainly from the parietal cells in cholestatic female rats

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Estrogenic symptoms of liver disease patients including biliary tract disorder with high frequency is observed in clinical cases. However, the origin of 17β-estradiol which is abundant enough to cause symptoms remains uncertain. In male rats, it has been reported that the parietal cells which have an abundance of aromatase-synthesized 17β-estradiol, and a part of 17β-estradiol secreted into the portal vein, may flow into the systemic circulation under a pathophysiological condition of the liver including bile duct ligation (BDL). The aim of this study is to reveal the origin of 17β-estradiol increment in female rats and to investigate the effect of BDL on the ovary during the estrus cycle.

Methods

Wistar female rats were used, and the common bile duct was ligated twice and transected completely at 7 days before termination. Serum portal venous and arterial 17β-estradiol levels, Cyp19a1 expressions, aromatase protein levels, and estrogen receptor (ER) α levels in the liver were measured during the estrus cycle.

Results

Both arterial and portal venous 17β-estradiol levels increased 2.9 times at proestrus and maintained constant levels during the cycle. The expression of Cyp19a1 and aromatase protein in the stomach maintained constant levels, and significantly decreased during the estrus cycle in the ovary. Hepatic ERα protein and Esr1 expressions decrease by BDL in all stages.

Conclusions

These results suggest that the increment of serum 17β-estradiol levels in obstructive cholestasis induced by BDL is derived from 17β-estradiol secreted from the parietal cells in females as well as males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carbone M, Mells GF, Pells G, Dawwas MF, Newton JL et al (2013) Sex and age are determinants of the clinical phenotype of primary biliary cirrhosis and response to ursodeoxycholic acid. Gastroenterology 144:560–569

    Article  CAS  PubMed  Google Scholar 

  2. Farrell GC, Cooksley WG, Powell LW (1979) Drug metabolism in liver disease: activity of hepatic microsomal metabolizing enzymes. Clin Pharmacol Ther 26:483–492

    Article  CAS  PubMed  Google Scholar 

  3. Kawata S, Imai Y, Inada M, Tamura S, Miyoshi S et al (1987) Selective reduction of hepatic cytochrome P450 content in patients with intrahepatic cholestasis. A mechanism for impairment of microsomal drug oxidation. Gastroenterology 92:299–303

    CAS  PubMed  Google Scholar 

  4. George J, Murray M, Byth K, Farrell GC (1995) Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 21:120–128

    CAS  PubMed  Google Scholar 

  5. Hutterer F, Denk H, Bacchin PG, Sckenkman JB, Schaffner F et al (1970) Mechanism of cholestasis. 1. Effect of bile acids on microsomal cytochrome P-450 dependent biotransformation system in vitro. Life Sci II 9:877–887

    Article  CAS  PubMed  Google Scholar 

  6. Mackinnon AM, Simon FR (1974) Reduced synthesis of hepatic microsomal cytochroma P450 in the bile duct ligated rat. Biochem Biophys Res Commun 56:437–443

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Murray M, Liddle C, Jiang XM, Farrell GC (1995) Downregulation of male-specific cytochrome P450s 2C11 and 3A2 in bile duct-ligated male rats: importance to reduced hepatic content of cytochrome P450 in cholestasis. Hepatology 22:580–587

    CAS  PubMed  Google Scholar 

  8. Setchell KD, Rodrigues CM, Clerici C, Solinas A, Morelli A et al (1997) Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology 112:226–235

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Robertson G, Field J, Liddle C, Farrell GC (1998) Effects of bile duct ligation on hepatic expression of female-specific CYP2C12 in male and female rats. Hepatology 28:624–630

    Article  CAS  PubMed  Google Scholar 

  10. Alvaro D, Alpini G, Onori P, Franchitto A, Glaser S et al (2002) Effect of ovariectomy on the proliferative capacity of intrahepatic rat cholangiocytes. Gastroenterology 123:336–344

    Article  CAS  PubMed  Google Scholar 

  11. Alvaro D, Alpini G, Onori P, Perego L, Svegliata Baroni G et al (2000) Estrogens stimulate proliferation of intrahepatic biliary epithelium in rats. Gastroenterology 119:1681–1691

    Article  CAS  PubMed  Google Scholar 

  12. Alvaro D, Alpini G, Onori P, Franchitto A, Glaser SS et al (2002) Alfa and beta estrogen receptors and the biliary tree. Mol Cell Endocrinol 193:105–108

    Article  CAS  PubMed  Google Scholar 

  13. Baird DT, Horton R, Longcope C, Tait JF (1969) Steroid dynamics under steady-state conditions. Recent Prog Horm Res 25:611–664

    CAS  PubMed  Google Scholar 

  14. de Jong FH, Hey AH, van der Molen HJ (1974) Oestradiol-17 beta and testosterone in rat testis tissue: effect of gonadotrophins, localization and production in vitro. J Endocrinol 60:409–419

    Article  PubMed  Google Scholar 

  15. Dorrington J, Armstrong DT (1995) Follicle-stimulating hormone stimulates estradiol-17β synthesis in cultured Sertori cells. Proc Natl Acad Sci USA 72:2677–2681

    Article  Google Scholar 

  16. Erickson GF, Hsueh AJW (1978) Stimulation of aromatase activity by follicle-stimulating hormone in rat granulose cells in vivo and in vitro. Endocrinology 102:1275–1282

    Article  CAS  PubMed  Google Scholar 

  17. Fukuda S, Terakawa N, Sato B, Imori T, Matsumoto K (1979) Hormonal regulation of activities of 17β-ol-dehydrogenases, aromatase, and 4-ene-5α-reductase in immature rat ovaries. J Steroid Biochem 11:1421–1427

    Article  CAS  PubMed  Google Scholar 

  18. Ueyama T, Shirasawa N, Mtasuzawa M, Yamada K, Shelangouski M et al (2002) Gastric parietal cells: potent endocrine role in secreting estrogen as a possible regulator of gastro-hepatic axis. Endocrinology 143:3162–3170

    Article  CAS  PubMed  Google Scholar 

  19. Ueyama T, Shirasawa N, Ito T, Tsuruo Y (2004) Estrogen-producing steroidogenic pathways in parietal cells of the rat gastric mucosa. Life Sci 74:2327–2337

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi H, Yoshida S, Sun YJ, Shirasawa N, Naito A (2013) Gastric estrogen increases pituitary estrogen receptor α and prolactin mRNAs during the different pathological conditions of the liver. Endocrine 43:170–183

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi H, Yoshida S, Sun YJ, Shirasawa N, Naito A (2013) Postnatal development of gastric aromatase and portal venous estradiol-17β levels in male rats. J Endocrinol 218:117–124

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi H, Yoshida S, Sun YJ, Shirasawa N, Naito A (2013) Gastric E2 and liver ERα correlate to serum E2 in the cholestatic male rat. J Endocrinol 219:39–49

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi H, Yoshida S, Sun YJ, Shirasawa N, Naito A (2014) Changes of gastric aromatase and portal venous 17β-estradiol during the postnatal development and estrus cycle in female rats. Endocrine 46:605–614

    Article  CAS  PubMed  Google Scholar 

  24. Izawa M, Inoue M, Osaki M, Ito H, Harada T et al (2008) Cytochrome P450 aromatase gene (CYP19) expression in gastric cancer. Gastric Cancer 11:103–110

    Article  CAS  PubMed  Google Scholar 

  25. Hori T, Ide M, Miyake T (1968) Ovarian estrogen secretion during the estrous cycle and under the influence of exogenous gonadotropins in rats. Endocrinol Jpn 15:215–222

    Article  CAS  PubMed  Google Scholar 

  26. Yoshinaga K, Hawkins RA, Stocker JF (1969) Estrogen secretion by the rat ovary in vivo during the estrous cycle and pregnancy. Endocrinology 85:103–112

    Article  CAS  PubMed  Google Scholar 

  27. Brown-Grant K, Exley D, Naftolin F (1970) Peripheral plasma oestradiol and luteinizing hormone concentrations during the oestrous cycle of the rat. J Endocrinol 48:295–296

    Article  CAS  PubMed  Google Scholar 

  28. Shaikh AA (1971) Estrone and estradiol levels in the ovarian venous blood from rats during the estrous cycle and pregnancy. Biol Reprod 5:297–307

    CAS  PubMed  Google Scholar 

  29. Dupon C, Kim MH (1973) Peripheral plasma levels of testosterone, androstenedione, and oestradiol during the rat oestrous cycle. J Endocrinol 59:653–654

    Article  CAS  PubMed  Google Scholar 

  30. Butcher RL, Collins WE, Fugo NW (1974) Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94:1704–1708

    Article  CAS  PubMed  Google Scholar 

  31. Hawkins RA, Freedman B, Marshall A, Killen E (1975) Oestradiol-17 beta and prolactin levels in rat peripheral plasma. Br J Cancer 32:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Waxman DJ (1988) Interactions of hepatic cytochrome P450 with steroid hormones: regioselectitivity and stereospecificity of steroid metabolism and hormonal regulation of rat P450 enzyme expression. Biochem Pharmacol 37:71–84

    Article  CAS  PubMed  Google Scholar 

  33. Mode A, Wiersma-Lasson E, Ström A, Zaphiropoulos PG, Gustaffson JÅ (1989) A dual role of growth hormone as a feminizing and masculinizing factor in the control of sex-specific cytochrome P450 enzymes in rat liver. Endocrinology 120:311–317

    Article  CAS  Google Scholar 

  34. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R et al (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42

    Article  CAS  PubMed  Google Scholar 

  35. Livak KJ, Schmitten TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method 25:402–408

    Article  CAS  Google Scholar 

  36. Van Thiel DH, Gavaler JS, Zajko AB, Cobb CF (1985) Consequences of complete bile-duct ligation on the pubertal process in the male rat. J Pediatr Gastroenterol Nutr 4:616–621

    Article  PubMed  Google Scholar 

  37. Dueland S, Reichen J, Everson GT, Davis RA (1991) Regulation of cholesterol and bile acid homoeostasis in bile-obstructed rats. Biochem J 280:373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thiesson HC, Jensen BL, Bistrup C, Ottosen PD, McNeilly AD et al (2007) Renal sodium retention in cirrhotic rats depends on glucocorticoid-mediated activation of mineralocorticoid receptor due to decreased renal 11beta-HSD-2 activity. Am J Physiol Regul Integr Comp Physiol 292:R625–R636

    Article  CAS  PubMed  Google Scholar 

  39. Marr W, White JO, Elder MG, Lim L (1980) Nucleo-cytoplasmic relationships of oestrogen receptors in rat liver during the oestrous cycle and in response to administered natural and synthetic oestrogen. Biochem J 190:17–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lax ER, Tamulevicius P, Müller A, Schriefers H (1983) Hepatic nuclear estrogen receptor concentrations in the rat—influence of age, sex, gestation, lactation and estrous cycle. J Steroid Biochem 19:1083–1088

    Article  CAS  PubMed  Google Scholar 

  41. Chico Y, Fresnedo O, Botham K, Lacort M, Ochoa B (1996) Regulation of bile acid synthesis by estradiol and progesterone in primary cultures of rat hepatocytes. Exp Clin Endocrinol 104:137–144

    Article  CAS  Google Scholar 

  42. MacGeoch C, Morgan ET, Gustafsson J-Å (1985) Hypothalamo-pituitary regulation of cytochrome P-45015b apoprotein levels in rat liver. Endocrinology 117:2085–2092

    Article  CAS  PubMed  Google Scholar 

  43. Zaphiropoulos PG, Mode A, Ström A, Möller C, Fernandez C et al (1988) cDNA cloning, sequence, and regulation of a major female-specific and growth hormone-inducible rat liver cytochrome P-450 active in 15b-hydroxylation of steroid sulfates. Proc Natl Acad Sci USA 85:4214–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ozawa M, Takahashi K, Akazawa KH, Takashima T, Nagata H et al (2011) PET of aromatase in gastric parietal cells using 11C-vorozole. J Nucl Med 52:1964–1969

    Article  CAS  PubMed  Google Scholar 

  45. Cho LY, Yang JJ, Ko KP, Ma SH, Shin A et al (2012) Genetic susceptibility factors on genes involved in the steroid hormone biosynthesis pathway and progesterone receptor for gastric cancer risk. PLoS One 7:e47603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledged to Mr. Nathan Strenge (Tokai University Yamagata Senior High School) for his suggestions and critically reading the manuscript. This work was supported by the Life Science Laboratory Research Grant (Grant Numbers K12G05, K13G05) and the Yuki Plan of Yamagata University (Grant Number DAY0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were performed in accordance with the institutional guidelines, and approved by the animal research ethical committee at Yamagata University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, H., Yoshida, S., Sun, YJ. et al. 17β-Estradiol in the systemic circulation derives mainly from the parietal cells in cholestatic female rats. J Endocrinol Invest 39, 389–400 (2016). https://doi.org/10.1007/s40618-015-0374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0374-8

Keywords

Navigation