Skip to main content

Advertisement

Log in

Effect of a single injection of testosterone enanthate on 17β estradiol and bone turnover markers in hypogonadal male patients

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Several clinical studies testify the critical role played by estrogens in male bone metabolism. The aim of our study is to assess the effect of a single injection of testosterone enanthate in a group of hypogonadal men on 17β estradiol serum levels and some bone metabolic parameters.

Method

Twenty-one hypogonadal males were given one testosterone enanthate injection (250 mg). Blood samples were drawn before the injection and after 1, 2 and 3 weeks. The following variables were measured: Total testosterone (TT), 17β estradiol (17β E2), Sex hormone binding globulin, total alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen (CTx).

Results

After testosterone injection, both TT and 17β E2 increased, peaking 1 week after the injection. Individual observation of the response of 17β E2 to testosterone showed that a subgroup (n = 9) failed to respond with any increase in 17β E2 at any of the weekly tests (group E2−), while the remainder (n = 12) showed a significant increase in 17β E2, which reached a mean value three times higher than at baseline (group E2+). The E2− patients reached a TT peak lower than that observed in the E+ group. CTx serum levels declined progressively in the E2+ group, reaching the significance (p = 0.03) at the end of the study, while it did not change in E− group.

Conclusion

This study suggests that a single injection of testosterone might have different effects on the production of endogenous estrogens, and a significant reduction of bone resorption parameters takes place only in the patients who show a significant increase of 17ß estradiol in response to testosterone administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425

    Article  CAS  PubMed  Google Scholar 

  2. Bouillon R, Bex M, Vanderschueren D, Boonen S (2004) Estrogens are essential for male pubertal periosteal bone expansion. J Clin Endocrinol Metab 89:6025–6029

    Article  CAS  PubMed  Google Scholar 

  3. Taes Y, Lapauw B, Vandewalle S, Zmierczak H, Goemaere S, Vanderschueren D, Kaufman JM, T’Sjoen G (2009) Estrogen-specific action on bone geometry and volumetric bone density, longitudinal observations in an adult with complete androgen insensitivity. Bone 45:392–397

    Article  CAS  PubMed  Google Scholar 

  4. Meier C, Nguyen TV, Handelsman DJ, Schindler C, Kushnir MM, Rockwood AL, Meikle AW, Center JR, Eisman JA, Seibel MJ (2008) Endogenous sex hormones and incident fracture risk in older men, the Dubbo Osteoporosis Epidemiology Study. Arch Intern Med 14:47–54

    Article  Google Scholar 

  5. Bjørnerem A, Ahmed LA, Joakimsen RM, Berntsen GK, Fønnebø V, Jørgensen L, Øian P, Seeman E, Straume B (2007) A prospective study of sex steroids, sex hormone-binding globulin, and non-vertebral fractures in women and men, the Tromso Study. Eur J Endocrinol 157:119–125

    Article  PubMed  Google Scholar 

  6. Goderie-Plomp HW, van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HA (2004) Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women, the Rotterdam Study. J Clin Endocrinol Metab 89:3261–3269

    Article  CAS  PubMed  Google Scholar 

  7. Amin S, Zhang Y, Felson DT, Sawin CT, Hannan MT, Wilson PW, Kiel DP (2006) Estradiol, testosterone, and the risk for hip fractures in elderly men from the Framingham Study. Am J Med 119:426–433

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S (2007) Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclasts. Cell 130:811–823

    Article  CAS  PubMed  Google Scholar 

  9. Martin-Millan M, Almeida M, Ambrogini E, Han L, Zhao H, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC (2010) The estrogen receptor α in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 24:323–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425

    Article  CAS  PubMed  Google Scholar 

  11. Lin IC, Slemp AE, Hwang C, Sena-Esteves M, Nah HD, Kirschner RE (2007) Dihydrotestosterone stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells and induces cranial suture fusion. Plast Reconstr Surg 120:1137–1147

    Article  CAS  PubMed  Google Scholar 

  12. Wiren KM, Toombs AR, Semirale AA, Zhang X (2006) Osteoblast and osteocyte apoptosis associated with androgen action in bone, requirement of increased Bax/Bcl-2 ratio. Bone 38:637–651

    Article  CAS  PubMed  Google Scholar 

  13. Garcia AJ, Tom C, Guemes M, Polanco G, Mayorga ME, Wend K, Miranda-Carboni GA, Krum SA (2013) ERα signaling regulates MMP3 expression to induce FasL cleavage and osteoclast apoptosis. J Bone Miner Res 28:283–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chen X, Deng Y, Zhou Z, Tao Q, Zhu J, Li X, Chen J, Hou J (2010) 17beta-estradiol combined with testosterone promotes chicken osteoblast proliferation and differentiation by accelerating the cell cycle and inhibiting apoptosis in vitro. Vet Res Commun 34:143–152

    Article  PubMed  Google Scholar 

  15. Kondoh S, Inoue K, Igarashi K, Sugizaki H, Shirode-Fukuda Y, Inoue E, Yu T, Takeuchi JK, Kanno J, Bonewald LF, Imai Y (2014) Estrogen receptor α in osteocytes regulates trabecular bone formation in female mice. Bone 60:68–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gao Y, Huang E, Zhang H, Wang J, Wu N, Chen X, Wang N, Wen S, Nan G, Deng F, Liao Z, Wu D, Zhang B, Zhang J, Haydon RC, Luu HH, Shi LL, He TC (2013) Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS One 12:e82436. doi:10.1371/journal.pone.0082436

  17. Börjesson AE, Lagerquist MK, Windahl SH, Ohlsson C (2013) The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cell Mol Life Sci 70:4023–4037

    Article  PubMed  Google Scholar 

  18. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB e Korach KS (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061

  19. Morishima A, Grubach MM, Simpson ER, Fischer C, Qin K (1995), Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 80:1841–1845

  20. Carani C, Qin K, Simoni M, faustini-Fustini M, Serpente S, Boyd J, Korach KS, Simpsom ER (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91–95

  21. Bilezikian JP, Morishima A, Bell J, Grumbach MM (1998) Increase bone mass as a result of estrogentherapy in a man with aromatase deficiency. N Engl J Med 339:599–603

  22. Tenover JS (1992) Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab 75:1092–1098

    CAS  PubMed  Google Scholar 

  23. Vermuelen A (1991) Androgens in the aging male. J Clin Endocrinol Metab 73:221–224

    Article  Google Scholar 

  24. Wang C, Swerloff RS, Iranmanesh A, Dobs A, Snyder PJ, Cunningham G, Matsumoto AM, Weber T, Berman N (2001) Effects of transdermal testosterone gel on bone turnover markers and bone mineral density in hypogonadal men. Clin Endocrinol 54:739–750

    Article  Google Scholar 

  25. Leder B (2007) Gonadal steroids and bone metabolism in men. Curr Opin Endocrinol Diabetes Obes 14:241–246

    Article  CAS  PubMed  Google Scholar 

  26. Nuti R, Martini G, Merlotti D, De Paola V, Valleggi F, Gennari L (2007) Bone metabolism in men, role of aromatase activity. J Endocrinol Invest 30(6 Suppl):18–23

    CAS  PubMed  Google Scholar 

  27. Vandenput L, Ohlsson C (2009) Estrogens as regulators of bone health in men. Nat Rev Endocrinol 5:437–443

    Article  CAS  PubMed  Google Scholar 

  28. Vandenput L, Ohlsson C (2010) Sex steroid metabolism in the regulation of bone health in men. J Steroid Biochem Mol Biol 121:582–588

    Article  CAS  PubMed  Google Scholar 

  29. Katznelson L (1998) Therapeutic role of androgens in the treatment of osteoporosis in men. Clin Endocrinol Metab 12:453–470

    CAS  Google Scholar 

  30. De Rosa M, Paesano L, Nuzzo V, Zarrilli S, Del Puente A, Oriente P, Lupoli G (2001) Bone mineral density and bone markers in hypogonadotropic and hypergonadotropic hypogonadal men after prolonged testosterone treatment. J Endocrinol Invest 24:246–252

    Article  PubMed  Google Scholar 

  31. Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, Kopelovich L, Hudis CA, Dannenberg AJ (2011) Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res 4:329–346

    Article  CAS  Google Scholar 

  32. Ghosh S, Hu Y, Li R (2010) Cell density is a critical determinant of aromatase expression in adipose stromal cells. J Steroid Biochem Mol Biol 118:231–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lakshman KM, Kaplan B, Travison TG, Basaria S, Knapp PE, Singh AB, LaValley MP, Mazer NA, Bhasin S (2010) The effect of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab 95:3955–3964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, Lenzi A, Fabbri A (2005) Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol 3:280–293

  35. Nakazawa R, Baba K, Nakano M, Katabami T, Saito N, Takahashi T, Iwamoto T (2006) Hormone profiles after intramuscular injection of testosterone enanthate in patients with hypogonadism. Endocr J 53:305–310

    Article  CAS  PubMed  Google Scholar 

  36. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–1560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Leder BZ, LeBlanc KM, Schoenfeld DA, Eastell R, Finkelstein JS (2003) Differential effects of androgens and estrogens on bone turnover in normal men. J Clin Endocrinol Metab 88:204–210

    Article  CAS  PubMed  Google Scholar 

  38. Duschek EJ, Gooren LJ, Netelenbos C (2004) Effects of raloxifene on gonadotrophins, sex hormones, bone turnover and lipids in healthy elderly men. Eur J Endocrinol 150:539–546

    Article  CAS  PubMed  Google Scholar 

  39. Doran PM, Riggs BL, Atkinson EJ, Khosla S (2001) Effects of raloxifene, a selective estrogen receptor modulator, on bone turnover markers and serum sex steroid and lipid levels in elderly men. J Bone Miner Res 16:2118–2125

    Article  CAS  PubMed  Google Scholar 

  40. Taxel P, Kennedy D, Fall P, Willard A, Shoukri K, Clive J, Raisz LG (2000) The effect of short-term treatment with micronized estradiol on bone turnover and gonadotrophins in older men. Endocr Res 26:381–398

    Article  CAS  PubMed  Google Scholar 

  41. Taxel P, Fall PM, Albertsen PC, Dowsett RD, Trahiotis M, Zimmerman J, Ohannessian C, Raisz LG (2002) The effect of micronized estradiol on bone turnover and calciotropic hormones in older men receiving hormonal suppression therapy for prostate cancer. J Clin Endocrinol Metab 87:4907–4913

    Article  CAS  PubMed  Google Scholar 

  42. Masi L, Becherini L, Gennari L, Amedei A, Colli E, Falchetti A, Farci M, Silvestri S, Gonnelli S, Brandi ML (2001) Polymorphism of the aromatase gene in postmenopausal Italian women, distribution and correlation with bone mass and fracture risk. J Clin Endocrinol Metab 86:2263–2269

    CAS  PubMed  Google Scholar 

  43. Salmen T, Heikkinen AM, Mahonen A, Kröger H, Komulainen M, Pallonen H, Saarikoski S, Honkanen R, Mäenpää PH (2003) Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. Ann Med 35:282–288

    Article  PubMed  Google Scholar 

  44. Zarrabeitia MT, Hernández JL, Valero C, Zarrabeitia AL, García-Unzueta M, Amado JA, González-Macías J, Riancho JA (2004) A common polymorphism in the 5′-untranslated region of the aromatase gene influences bone mass and fracture risk. Eur J Endocrinol 150:699–704

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Luisetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camozzi, V., Bonanni, G., Frigo, A. et al. Effect of a single injection of testosterone enanthate on 17β estradiol and bone turnover markers in hypogonadal male patients. J Endocrinol Invest 38, 389–397 (2015). https://doi.org/10.1007/s40618-014-0183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0183-5

Keywords

Navigation