Skip to main content

Advertisement

Log in

The Challenges of Integrating Behavioral and Neural Data: Bridging and Breaking Boundaries Across Levels of Analysis

  • ORIGINAL RESEARCH
  • Published:
The Behavior Analyst Aims and scope Submit manuscript

Abstract

We describe here two approaches introduced by Abrahamsen (1987) that can be used by behavior analysts to interpret neuroscientific data. The first is a “boundary-bridging” approach aimed at understanding the interdisciplinary interactions between the behavioral and the neural levels of analysis while keeping the two domains independent. When presenting the boundary-bridging approach, we describe neuroplasticity, a perspective that describes how changes at the brain level can be understood by examining behavioral factors. In the second part of the paper, we contrast two “boundary-breaking” perspectives: neuropsychology and behavior analytic neuroscience. In neuropsychology, localized brain activation is used to explain behavior. In behavior analytic neuroscience, brain responses are interpreted as behavior. We discuss the conditions under which brain responses can be considered behavior and propose that including brain responses within a behavioral framework may allow carrying out a more sophisticated and temporally detailed behavior analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For a recent and comprehensive treatment of Skinner’s approach to neuroscience, refer to Zilio (2016).

  2. A potential explanation for this approach is the early and extensive reliance of cognitive science on the computer metaphor in which every bit of observed functionality is seen to be the result of software or hardware under the surface. This perspective might have resulted in the subsequent attempt within neuropsychology to map each behavioral regularity to a part of the underlying physiological substrate, i.e., the brain.

  3. So far, three kinds of EEG/ERP brain responses have been used successfully to create a real-time interface with external devices that require a minimal amount of averaging. More specifically, steady-state visually evoked potentials (SSVEPs), the P300 response, and the Mu Rhythm (Wolpaw, Birbaumer, Heetderks, McFarland, Peckham, Schalk, & Vaughan, 2000; Pfurtscheller, Brunner, Schlögl, & Da Silva, 2006a, b; Sepulveda, 2011).

References

  • Abrahamsen, A. A. (1987). Bridging boundaries versus breaking boundaries: psycholinguistics in perspective. Synthese, 72(3), 355–388.

    Article  Google Scholar 

  • Banoub, M., Tetzlaff, J. E., & Schubert, A. (2003). Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. The Journal of the American Society of Anesthesiologists, 99(3), 716–737.

    Google Scholar 

  • Bechtel, W. (2012). Integrating scientific disciplines: case studies from the life sciences (vol. 2). New York: Springer Science & Business Media.

    Google Scholar 

  • Bickle, J. (2008). Real reduction in real neuroscience: metascience, not philosophy of science (and certainly not metaphysics!). Being reduced: new essays on reduction, explanation, and causation, 34–51.

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361(6407), 31–39.

    Article  PubMed  Google Scholar 

  • Branch, M. N., & Schaal, D. W. (1990). Roles and characteristics of theory in behavioral pharmacology. Advances in Behavioral Pharmacology, 7, 171–196.

    Google Scholar 

  • Brener, J., & Mitchell, S. (1989). Changes in energy expenditure and work during response acquisition in rats. Journal of Experimental Psychology: Animal Behavior Processes, 15(2), 166.

    PubMed  Google Scholar 

  • Caldara, R., Deiber, M. P., Andrey, C., Michel, C. M., Thut, G., & Hauert, C. A. (2004). Actual and mental motor preparation and execution: a spatiotemporal ERP study. Experimental Brain Research, 159(3), 389–399.

    Article  PubMed  Google Scholar 

  • Choi, B. C., & Pak, A. W. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine, 29(6), 351.

    PubMed  Google Scholar 

  • Chomsky, N. (1985). Recent contributions to the theory of innate ideas (pp. 31–40). Netherlands: Springer.

    Google Scholar 

  • Dickstein, R., Dunsky, A., & Marcovitz, E. (2004). Motor imagery for gait rehabilitation in post-stroke hemiparesis. Physical Therapy, 84(12), 1167–1177.

    PubMed  Google Scholar 

  • Dijkerman, H. C., Letswaart, M., Johnston, M., & MacWalter, R. S. (2004). Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clinical Rehabilitation, 18(5), 538–549.

    Article  PubMed  Google Scholar 

  • Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Büchel, C., et al. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. The Journal of Neuroscience, 26(23), 6314–6317.

    Article  PubMed  Google Scholar 

  • Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008). Changes in gray matter induced by learning—revisited. PLoS ONE, 3(7), e2669.

    Article  PubMed  PubMed Central  Google Scholar 

  • Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79, 481–492.

    Article  Google Scholar 

  • Duffau, H. (2005). Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurology, 4, 476–486.

    Article  PubMed  Google Scholar 

  • Feltz, D. H., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: a meta-analysis. Journal of Sport Psychology, 5, 25–57.

    Article  Google Scholar 

  • Furman, S. (1973). Intestinal biofeedback in functional diarrhea: a preliminary report. Journal of Behavior Therapy and Experimental Psychiatry, 4(4), 317–321.

    Article  Google Scholar 

  • Gaffan, D. (2002). Against memory systems. Philosophical Transactions of the Royal Society B: Biological Sciences 357(1424), 1111–1121.

  • Hefferline, R. F., Keenan, B., & Harford, R. A. (1959). Escape and avoidance conditioning in human subjects without their observation of the response. Science, 130(3385), 1338–1339.

    Article  PubMed  Google Scholar 

  • Horne, P. J., & Lowe, C. F. (1996). On the origins of naming and other symbolic behavior. Journal of the Experimental Analysis of Behavior, 65(1), 185–241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hull, D. L., Langman, R. E., & Glenn, S. S. (2001). A general account of selection: biology, immunology, and behavior. Behavioral and Brain Sciences, 24(03), 511–528.

    Article  PubMed  Google Scholar 

  • Ius, T., Angelini, E., de Schotten, M. T., Mandonnet, E., & Duffau, H. (2011). Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. NeuroImage, 56(3), 992–1000.

    Article  PubMed  Google Scholar 

  • Johnson-Frey, S. H. (2004). Stimulation through simulation? Motor imagery and functional reorganization in hemiplegic stroke patients. Brain and Cognition, 55(2), 328–331.

    Article  PubMed  Google Scholar 

  • Kilgard, M. P. (2012). Harnessing plasticity to understand learning and treat disease. Trends in Neurosciences, 35(12), 715–722.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimberley, T. J., Khandekar, G., Skraba, L. L., Spencer, J. A., Van Gorp, E. A., & Walker, S. R. (2006). Neural substrates for motor imagery in severe hemiparesis. Neurorehabilitation and Neural Repair, 20(2), 268–277.

    Article  PubMed  Google Scholar 

  • Laurenti‐Lions, L., Gallego, J., Chambille, B., Vardon, G., & Jacquemin, C. (1985). Control of myoelectrical responses through reinforcement. Journal of the Experimental Analysis of Behavior, 44(2), 185–193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr, E. (1985). How biology differs from the physical sciences. In D. J. Depew & B. H. Weber (Eds.), Evolution at a crossroads (pp. 43–63). Cambridge: Bradford Books.

    Google Scholar 

  • Newton, J. R., Ellsworth, C., Miyakawa, T., Tonegawa, S., & Sur, M. (2004). Acceleration of visually cued conditioned fear through the auditory pathway. Nature Neuroscience, 7(9), 968–973.

    Article  PubMed  Google Scholar 

  • Notterman, J. M. (1959). Force emission during bar pressing. Journal of Experimental Psychology, 58(5), 341.

    Article  PubMed  Google Scholar 

  • Notterman, J. M., & Mintz, D. E. (1965). Dynamics of response. Hoboken: Wiley.

    Google Scholar 

  • Ortu, D. (2012). Neuroscientific measures of covert behavior. Behavior Analyst, 35(1), 75–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer, D. C. (1991). A behavioral interpretation of memory. In L. J. Hayes & P. N. Chase (Eds.), Dialogues on verbal behavior (pp. 261–279). Reno: Context Press.

    Google Scholar 

  • Palmer, D. C. (2004). Data in search of a principle: a review of relational frame theory: a post-skinnerian account of human language and cognition. Journal of the Experimental Analysis of Behavior, 81(2), 189–204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer, D. C. (2009). The role of private events in the interpretation of complex behavior. Behavior and Philosophy, 37, 3–19.

    Google Scholar 

  • Palmer, D. C., & Donahoe, J. W. (1992). Essentialism and selectionism in cognitive science and behavior analysis. American Psychologist, 47(11), 1344–1358.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G., Brunner, C., Schlögl, A., & Da Silva, F. L. (2006a). Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153–159.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G., Brunner, C., Schlögl, A., & Da Silva, F. L. (2006b). Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153–159.

    Article  PubMed  Google Scholar 

  • Porro, C. A., Francescato, M. P., Cettolo, V., Diamond, M. E., Baraldi, P., Zuiani, C., et al. (1996). Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. The Journal of Neuroscience, 16(23), 7688–7698.

    PubMed  Google Scholar 

  • Recanzone, G. A., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. The Journal of Neuroscience, 13(1), 87–103.

    PubMed  Google Scholar 

  • Roe, A. W., Pallas, S. L., Hahm, J. O., & Sur, M. (1990). A map of visual space induced in primary auditory cortex. Science, 250(4982), 818–820.

    Article  PubMed  Google Scholar 

  • Schaal, D. W. (2003). Explanatory reductionism in behavior analysis. In: Behavior theory and philosophy (pp. 83–102). Springer, New York.

  • Schnitzler, A., Salenius, S., Salmelin, R., Jousmäki, V., & Hari, R. (1997). Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage, 6(3), 201–208.

  • Schwarz, D. A., Lebedev, M. A., Hanson, T. L., Dimitrov, D. F., Lehew, G., Meloy, J., et al. (2014). Chronic, wireless recordings of large scale brain activity in freely moving rhesus monkeys. Nature Methods, 11(6), 670–676.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sepulveda, F. (2011). Brain-actuated control of robot navigation. Rijeka: INTECH Open Access Publisher.

    Book  Google Scholar 

  • Skinner, B. F. (1935). The generic nature of the concepts of stimulus and response. Journal of General Psychology, 12, 40–65.

    Article  Google Scholar 

  • Skinner, B. F. (1938). The behavior of organisms: an experimental analysis. Cambridge: BF Skinner Foundation.

    Google Scholar 

  • Skinner, B. F. (1953). Science and human behavior. New York: Simon and Schuster.

    Google Scholar 

  • Skinner, B. F. (1957). Verbal behavior. Cambridge: BF Skinner Foundation.

    Book  Google Scholar 

  • Skinner, B. F. (1988). Comments and consequences. In A. C. Catania & S. Harnad (Eds.), The selection of behavior: the operant behaviorism of B.F. Skinner (pp. 382–461). New York: Cambridge University Press.

    Google Scholar 

  • Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35.

    Article  PubMed  Google Scholar 

  • Sterman, M. B., Wyrwicka, W., & Roth, S. R. (1969). Electrophysiological correlates and neural substrates of alimentary behavior in the cat. Annals of the New York Academy of Sciences, 157, 723–739.

    Article  PubMed  Google Scholar 

  • Stevens, J. A., & Stoykov, M. E. P. (2003). Using motor imagery in the rehabilitation of hemiparesis. Archives of Physical Medicine and Rehabilitation, 84(7), 1090–1092.

    Article  PubMed  Google Scholar 

  • Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9(4), 526–533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, T. (1984). The examining magistrate for nature: a retrospective review of Claude Bernard’s an introduction to the study of experimental medicine. Journal of the Experimental Analysis of Behavior, 41(2), 211–216.

    Article  PubMed Central  Google Scholar 

  • van Boxtel, G. J., van der Molen, M. W., Jennings, J. R., & Brunia, C. H. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological Psychology, 58(3), 229–262.

    Article  PubMed  Google Scholar 

  • Vyse, S. (2013). Changing course. Behavior Analyst, 36, 123–135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., et al. (2000). Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8(2), 164–173.

    Article  PubMed  Google Scholar 

  • Wyrwicka, W., & Sterman, M. B. (1968). Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiology and Behavior, 3, 703–707.

    Article  Google Scholar 

  • Zilio, D. (2016). Who, what, and when: Skinner’s critiques of neuroscience and his main targets. Behavior Analyst, 122.

  • Zillmer, E. A., Spiers, M. V., & Culbertson, W. (2007). Principles of neuropsychology. Scarborough: Nelson Education.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Ortu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

The corresponding author is funded by the Beatrice H. Barrett endowment for research on neuro-operant relations to the University of North Texas.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortu, D., Vaidya, M. The Challenges of Integrating Behavioral and Neural Data: Bridging and Breaking Boundaries Across Levels of Analysis. BEHAV ANALYST 40, 209–224 (2017). https://doi.org/10.1007/s40614-016-0074-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40614-016-0074-5

Keywords

Navigation