Skip to main content
Log in

Maps That Must Be Affine or Conjugate Affine: A Problem of Vladimir Arnold

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

A k-flat in a vector space is a k-dimensional affine subspace. Our basic result is that an injection \(T:{{\mathbb {C}}}^n\rightarrow {{\mathbb {C}}}^n\) that for some \(k\in \{1,2,\ldots ,n-1\}\), T maps all k-flats to flats of \({{\mathbb {C}}}^n\) and is either continuous at a point or Lebesgue measurable, is either an affine map or a conjugate-affine map. An analogous result is proven for injections of the complex projective spaces. In the case of continuity at a point, this is generalized in several directions, the main one being that the complex numbers can be replaced by a finite-dimensional division algebra over an Archimedean ordered field. We also prove injective versions of the Fundamental Theorems of affine and projective geometry and give a counter-example to the surjective version of the latter. This extends work of A. G. Gorinov on a problem of V. I. Arnold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V.I.: Arnold’s problems, Springer-Verlag, Berlin; PHASIS, Moscow. Translated and revised edition of the 2000 Russian original. Philippov, A. Yakivchik and M. Peters, With a preface by V (2004)

  • Artin, E.: Geometric Algebra, Wiley Classics Library. Wiley, New York (1988). (Reprint of the 1957 original, A Wiley-Interscience Publication)

    Google Scholar 

  • Banach, S.: Sur l’équation fonctionnelle \(f(x+y) = f(x)+f(y)\). Fundamenta Mathematicae 1(1), 123–124 (1920). http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1115.pdf

  • Bennett, M.K.: Affine and Projective Geometry, A Wiley-Interscience Publication. Wiley, New York (1995)

    Book  Google Scholar 

  • Chubarev, A., Pinelis, I.: Fundamental theorem of geometry without the \(1\)-to-\(1\) assumption. Proc. Am. Math. Soc. 127(9), 2735–2744 (1999)

    Article  MathSciNet  Google Scholar 

  • Darboux, J.-G.: MĂ©moire sur les fonctions discontinues. Ann. Sci. École Norm. Sup. 2, 57–112 (1875)

    Article  Google Scholar 

  • FrĂ©chet, M.: Pri la funkcia ekvaco \(f(x+y)=f(x)+f(y)\). Enseignement Math. 15, 390–393 (1913)

    MATH  Google Scholar 

  • Gorinov, A.G.: Pseudocomplex and pseudo-(bi)-quaternion mappings. Funktsional. Anal. i Prilozhen. 38(2), 84–85 (2004)

    Article  MathSciNet  Google Scholar 

  • Holz, M., Steffens, K., Weitz, E.: Introduction to Cardinal Arithmetic. Birkhäuser, Basel (1999)

    Book  Google Scholar 

  • Járai, A.: Regularity Properties of Functional Equations in Several Variables, Advances in Mathematics (Springer), vol. 8. Springer, New York (2005)

    MATH  Google Scholar 

  • Newton, I.: The Method of Fluxions and Infinite Series: With Its Application to the Geometry of Curve-Lines, Translated into English by John Colson, Henry Woodfall, London (1736). https://books.google.com/books?id=WyQOAAAAQAAJ

  • Puiseux, V.A.: Recherches sur les fonctions algĂ©briques. Journal de mathĂ©matiques pures et appliquĂ©es \(1^{{\rm re}}\) sĂ©rie 15, 365–480 (1850)

  • Rigby, J.F.: Collineations on quadrilaterals in projective planes. Mathematica (Cluj) 10(33), 369–383 (1968)

    MathSciNet  MATH  Google Scholar 

  • SierpiĹ„ski, W.: Sur l’équation fonctionnelle \(f(x+y) = f(x)+f(y)\). Fundamenta Mathematicae 1(1), 116–122 (1920). http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1114.pdf

  • Steinitz, E.: Algebraische Theorie der Körper. J. Reine Angew. Math. 137, 167–309 (1910)

    Article  MathSciNet  Google Scholar 

  • Walker, R.J.: Algebraic Curves, Princeton Mathematical Series, vol. 13. Princeton University Press, Princeton (1950)

    Google Scholar 

Download references

Acknowledgements

We wish to thank the referee for suggesting that the proof of the first part of Theorem 2 should extend to arbitrary topological vector spaces. As a result, we have been able to state and prove our Main Theorems in greater generality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Howard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

George F. McNulty was supported by NSF Grant 1500216.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorinov, A., Howard, R., Johnson, V. et al. Maps That Must Be Affine or Conjugate Affine: A Problem of Vladimir Arnold. Arnold Math J. 6, 213–229 (2020). https://doi.org/10.1007/s40598-020-00147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-020-00147-7

Keywords

Mathematics Subject Classification

Navigation