Skip to main content
Log in

Some exponential Diophantine equations III: a new look at the generalized Lebesgue–Nagell equation

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

Let D be a fixed non-square integer, and let h(4D) denote the class number of binary quadratic primitive forms with discriminant 4D. Let k be a fixed even integer with \(\gcd (D,k)=1\). In this paper, using some properties on exponential Diophantine equations with the forms \(X^2-DY^2=k^Z\) and \({X^\prime }^2-D{Y^\prime }^2=4k^{Z^\prime }\), we prove that if the equation \(a^2-Db^2=8\zeta \) has no integer solutions (ab) with \(\gcd (a,b)=1\), where \(\zeta =1\) or 2 according to \(2\not \mid h(4D)\) or \(2\mid h(4D)\), then the generalized Lebesgue–Nagell equation \((*)\) \(x^2-D^m=y^n\) has no positive integer solutions (xymn) with \(\gcd (x,y)=1\), \(2\mid y\), \(2\not \mid m\), \(n>2\) and \(h(4D)\mid n\). By the above result, we can directly derive that if \(D<0\) and \(D\ne -7\) or \(-15\), then \((*)\) has no positive integer solutions (xymn) with \(\gcd (x,y)=1\), \(2\mid y\), \(2\not \mid m\), \(n>2\) and \(h(4D)\mid n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. Bennett, M.A., Jacobs, P.M., Siksek, S.: \(\mathbb{Q} \)-curves and the Lebesgue–Nagell equation. J. Théor. Nombres Bordx. 35, 495–510 (2023)

    Article  MathSciNet  Google Scholar 

  2. Bennett, M.A., Siksek, S.: Difference between perfect powers: the Lebesgue–Nagell equation. Trans. Am. Math. Soc. 376, 335–370 (2023)

    MathSciNet  Google Scholar 

  3. Bennett, M.A., Siksek, S.: Difference between perfect powers: prime power gaps. Algebra Number Theory 17, 1789–1846 (2023)

    Article  MathSciNet  Google Scholar 

  4. Bennett, M.A., Skinner, C.M.: Ternary Diophantine equations via Galois representations and modular forms. Can. J. Math. 56, 23–54 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  6. Bilu, Y.F., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M.Mignotte. J. Reine Angew. Math. 539, 75–122 (2001)

    MathSciNet  Google Scholar 

  7. Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations II: the Lebesgue–Nagell equation. Compos. Math. 142, 31–62 (2006)

    Article  MathSciNet  Google Scholar 

  8. Cremona, J., Siksek, S.: On the Diophantine equation \(x^2+7=y^n\). Acta Arith. 109, 143–149 (2003)

    Article  MathSciNet  Google Scholar 

  9. Fujita, Y., Le, M.: Some exponential Diophantine equations II: the equation \(x^2-Dy^2=k^z\) for even \(k\). Math. Slovaca 72, 341–354 (2022)

    Article  MathSciNet  Google Scholar 

  10. Koutsianas, A.: An application of the modular and the symplectic argument to a Lebesgue–Nagell equation. Mathematika 66, 230–244 (2020)

    Article  MathSciNet  Google Scholar 

  11. Le, M.-H.: Some exponential Diophantine equations I: The equation \(D_1x^2-D_2y^2=\lambda k^z\). J. Number Theory 55, 209–221 (1995)

    Article  MathSciNet  Google Scholar 

  12. Le, M.-H., Hu, Y.-Z.: New advances on the generalized Lebesgue–Ramanujan–Nagell equation. Adv. Math. Beijing 41, 385–397 (2012). (in Chinese)

  13. Le, M.H., Soydan, G.: A brief survey on the generalized Lebesgue–Ramanujan–Nagell equation. Surv. Math. Appl. 15, 473–523 (2020)

    MathSciNet  Google Scholar 

  14. Lebesgue Sur l’impossibilité, V.A.: en nombres entiers, de l’équation \(x^m=y^2+1\). Nouv. Ann. de Math. 9, 178–181 (1850)

  15. Nagell, T.: Sur l’impossibilité de quelques equations à deux indéterminées. Norsk Mat. Forenings Skr. 13, 65–82 (1923)

    Google Scholar 

Download references

Acknowledgements

We cordially thank an anonymous referee for carefully reading our paper and for giving such constructive comments which substantially helped improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Soydan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, M., Soydan, G. Some exponential Diophantine equations III: a new look at the generalized Lebesgue–Nagell equation. Bol. Soc. Mat. Mex. 30, 35 (2024). https://doi.org/10.1007/s40590-024-00615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-024-00615-6

Keywords

Mathematics Subject Classification

Navigation