Skip to main content
Log in

About mean value theorems for the singular parabolic equation

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

A huge number of physical, geometric, and probabilistic problems lead to the construction and study of parabolic partial differential equations. The emergence of new problems of information propagation and processes with memory leads to the need to consider parabolic type equations with various operators acting on spatial variables. In this article, mean value theorems for the singular parabolic equation were obtained. The singularity is due to the presence of the Laplace–Bessel operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ekincioglu, I., Guliyev, V.S., Shishkina, E.L.: Fractional weighted spherical mean and maximal inequality for the weighted spherical mean and its application to singular PDE. J. Math. Sci. 1–21 (2023)

  2. Karapetyants, A.N., Kravchenko, V.V.: Methods of Mathematical Physics: Classical and Modern. Birkhäuser, Cham, Switzerland (2022)

    Book  MATH  Google Scholar 

  3. Betancor, J.J., de León-Contreras, M.: Parabolic equations involving Bessel operators and singular integrals. Integr. Eqn. Oper. Theory 90(18), 1–43 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Muravnik, A.B.: Stabilization of solutions of certain singular quasilinear parabolic equations. Math. Notes 74(6), 812–818 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Muravnik, A.B.: The Cauchy problem for certain inhomogeneous difference-differential parabolic equations. Math. Notes 74(4), 510–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Muravnik, A.B.: On the unique solvability of the Cauchy problem for some difference-differential parabolic equations. Differ. Equ. 40(5), 742–752 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Muravnik, A.B.: Uniqueness of the solution of the Cauchy problem for some differential-difference parabolic equations. Differ. Equ. 40(10), 1461–1466 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kipriyanov, I.A.: Singular Elliptic Boundary Value Problems. Nauka, Moscow (1997)

    MATH  Google Scholar 

  9. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922

  10. I.P. Polovinkin, Mean value theorems for linear partial differential equations. J. Math. Sci. (N.Y.) 197(3), 399–403 (2014)

  11. Lyakhov, L.N., Polovinkin, I.P., Shishkina, E.L.: On a Kipriyanov problem for a singular ultrahyperbolic equation. Differ. Equ. 50(4), 513–525 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lyakhov, L.N., Polovinkin, I.P., Shishkina, E.L.: Formulas for the solution of the Cauchy problem for a singular wave equation with Bessel time operator. Dokl. Math. 90(3), 737–742 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shishkina, E.L., Sitnik, S.M.: Transmutations, singular and fractional differential equations with applications to mathematical physics. Elsevier, Amsterdam (2020)

    MATH  Google Scholar 

  14. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and series. 1, Elementary Functions. Gordon & Breach Sci. Publ., New York (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khitam Alzamili.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

In this section, we give some formulas and calculations used in the article.

Proposition 1

[13] Integral \(\int \limits _{S_1^+(n)}\textbf{j}_\gamma (r\theta ,\xi ) \theta ^\gamma \,\textrm{d}S\) is calculated by the formula

$$\begin{aligned} \int \limits _{S_1^+(n)}\textbf{j}_\gamma (x,r\theta ) \theta ^\gamma \,\textrm{d}S=\frac{\prod \limits ^n_{i=1}\Gamma \left( \frac{\gamma _i+1}{2}\right) }{2^{n-1}\Gamma \left( \frac{n+\mid \gamma \mid }{2}\right) }\, j_{\frac{n+\mid \gamma \mid }{2}-1}(r\mid x\mid ), \end{aligned}$$
(16)

where

$$\begin{aligned} S_1^+(n)=\{x\in \overline{\mathbb {R}}\,^n_+:\mid x\mid =1\}\cup \{x\in \overline{\mathbb {R}}\,^n_+:x_i=0,\mid x\mid {\le } r,i=1,\ldots ,n\} \end{aligned}$$

is the part of the unit sphere belonging to \(\mathbb {R}^n_+\).

Proposition 2

The next formula is valid

$$\begin{aligned} (\textbf{F}_\gamma ^{-1})_\xi \{e^{-a^2\mid \xi \mid ^2t}\}(x)=\frac{2^{-\mid \gamma \mid }}{a^{n+\mid \gamma \mid } t^{\frac{n+\mid \gamma \mid }{2}}\Gamma \left( \frac{n+\mid \gamma \mid }{2}\right) \prod \limits _{j=1}^n\, \Gamma \left( \frac{\gamma _j{+}1}{2}\right) }\, e^{-\frac{\mid x\mid ^2}{4 a^2 t}}. \end{aligned}$$
(17)

Proof

We have

$$\begin{aligned} (\textbf{F}_\gamma ^{-1})_\xi \{e^{-a^2\mid \xi \mid ^2t}\}(x)= & {} \frac{2^{n-\mid \gamma \mid }}{\prod \limits _{j=1}^n\, \Gamma ^2\left( \frac{\gamma _j{+}1}{2}\right) }\int \limits _{\mathbb {R}^n_+} \textbf{j}_\gamma (x,\xi )e^{-a^2\mid \xi \mid ^2t}\xi ^\gamma \,\textrm{d}\xi =\{\xi =r\theta \}= \\= & {} \frac{2^{n-\mid \gamma \mid }}{\prod \limits _{j=1}^n\, \Gamma ^2\left( \frac{\gamma _j{+}1}{2}\right) }\int \limits _0^\infty e^{-a^2r^2t}r^{n+\mid \gamma \mid -1}dr \int \limits _{S^+_1(n)} \textbf{j}_\gamma (x,r\theta )\theta ^\gamma \textrm{d}S. \end{aligned}$$

Using formula (16), we obtain

$$\begin{aligned}{} & {} (\textbf{F}_\gamma ^{-1})_\xi \{e^{-a^2\mid \xi \mid ^2t}\}(x) \\{} & {} \quad =\frac{2^{1-\mid \gamma \mid }}{\Gamma \left( \frac{n+\mid \gamma \mid }{2}\right) \prod \limits _{j=1}^n\, \Gamma \left( \frac{\gamma _j{+}1}{2}\right) }\,\int \limits _0^\infty e^{-a^2r^2t}j_{\frac{n+\mid \gamma \mid }{2}-1}(r\mid x\mid )r^{n+\mid \gamma \mid -1}dr \\{} & {} \quad =\frac{2^{\frac{n-\mid \gamma \mid }{2}}}{\Gamma \left( \frac{n+\mid \gamma \mid }{2}\right) \prod \limits _{j=1}^n\, \Gamma \left( \frac{\gamma _j{+}1}{2}\right) }\, \frac{1}{\mid x\mid ^{\frac{n+\mid \gamma \mid }{2}-1}} \int \limits _0^\infty e^{-a^2r^2t}J_{\frac{n+\mid \gamma \mid }{2}-1}(r\mid x\mid )r^{\frac{n+\mid \gamma \mid }{2}}dr \\{} & {} \quad =\frac{2^{-\mid \gamma \mid }}{a^{n+\mid \gamma \mid } t^{\frac{n+\mid \gamma \mid }{2}}\Gamma \left( \frac{n+\mid \gamma \mid }{2}\right) \prod \limits _{j=1}^n\, \Gamma \left( \frac{\gamma _j{+}1}{2}\right) }\, e^{-\frac{\mid x\mid ^2}{4 a^2 t}}. \end{aligned}$$

\(\square \)

Proposition 3

The next formula is valid

$$\begin{aligned} \,^\gamma \textbf{T}^y_x e^{-\frac{\mid x\mid ^2}{4 a^2 t}}=e^{-\frac{\mid x\mid ^2+\mid y\mid ^2}{4a^2t}}\textbf{i}_{\gamma }\left( x,\frac{y}{2a^2t}\right) , \end{aligned}$$
(18)

where \(\textbf{i}_\gamma \) is defined by (6).

Proof

We have

$$\begin{aligned} \,^\gamma \textbf{T}^y_x e^{-\frac{\mid x\mid ^2}{4 a^2 t}}=\prod \limits _{k=1}^n \,^\gamma {T}^{y_k}_{x_k} e^{-\frac{1}{4 a^2 t}x_k^2}. \end{aligned}$$

Using the formula 3.154 from [13], we obtain

$$\begin{aligned}{} & {} \,^\gamma {T}^{y_k}_{x_k} e^{-\frac{1}{4 a^2 t}x_k^2}= \\{} & {} \quad =\frac{2^{\gamma _k} C(\gamma _k)}{(4x_ky_k)^{\gamma _k-1}}\int \limits _{\mid x_k-y_k\mid }^{x_k+y_k}z e^{-\frac{1}{4 a^2 t}z^2}[(z^2-(x_k-y_k)^2)((x_k+y_k)^2-z^2)]^{\frac{\gamma _k}{2}-1}dz. \end{aligned}$$

Find the integral

$$\begin{aligned} I= & {} \int \limits _{\mid x_k-y_k\mid }^{x_k+y_k}z e^{-\frac{1}{4 a^2 t}z^2}[(z^2-(x_k-y_k)^2)((x_k+y_k)^2-z^2)]^{\frac{\gamma _k}{2}-1}dz =\{z^2=\zeta \}= \\= & {} \frac{1}{2}\int \limits _{(x_k-y_k)^2}^{(x_k+y_k)^2} e^{-\frac{1}{4 a^2 t}\zeta }[(\zeta -(x_k-y_k)^2)((x_k+y_k)^2-\zeta )]^{\frac{\gamma _k}{2}-1}d\zeta \\= & {} \{\zeta -(x_k-y_k)^2=w\}= \\= & {} \frac{1}{2}e^{-\frac{(x_k-y_k)^2}{4 a^2 t}}\int \limits _{0}^{4x_ky_k} e^{-\frac{1}{4 a^2 t}w}[w(4x_ky_k-w)]^{\frac{\gamma _k}{2}-1}dw. \end{aligned}$$

Applying formula 2.3.6.2 from [14] of the form

$$\begin{aligned}{} & {} \int \limits _0^a x^{\alpha -1}(a-x)^{\alpha -1}e^{-px}\textrm{d}x=\sqrt{\pi }\Gamma (\alpha )\left( \frac{a}{p}\right) ^{\alpha -1/2}e^{-ap/2} I_{\alpha -1/2}(ap/2), \nonumber \\{} & {} \text {Re}\,\alpha >0, \end{aligned}$$
(19)

we get

$$\begin{aligned}{} & {} \int \limits _{0}^{4x_ky_k} e^{-\frac{1}{4 a^2 t}w}[w(4x_ky_k-w)]^{\frac{\gamma _k}{2}-1}dw= \\{} & {} \quad =(4a)^{\gamma _k-1}\sqrt{\pi }\Gamma \left( \frac{\gamma _k}{2}\right) \,e^{-\frac{x_ky_k}{2a^2t}} (tx_ky_k)^{\frac{\gamma _k-1}{2}}I_{\frac{\gamma _k-1}{2}}\left( \frac{x_ky_k}{2a^2t}\right) \end{aligned}$$

and

$$\begin{aligned} I=2^{2\gamma _k-3}a^{\gamma _k-1}\sqrt{\pi }\Gamma \left( \frac{\gamma _k}{2}\right) \,e^{-\frac{x_k^2+y_k^2}{4a^2t}} (tx_ky_k)^{\frac{\gamma _k-1}{2}}I_{\frac{\gamma _k-1}{2}}\left( \frac{x_ky_k}{2a^2t}\right) . \end{aligned}$$

Then, substituting the resulting formula into the product \( \prod \limits _{k=1}^n \,^\gamma {T}^{y_k}_{x_k} e^{-\frac{1}{4 a^2 t}x_k^2}\) after simplification, we get (18). \(\square \)

Conclusion

Parabolic equations are the main sources of diffusion problems and the theory of stochastic processes. If diffusion is slowed down or accelerated, or if the process has memory, then instead of the Laplace operator, other operators appear in the heat equation. The main attention in the article was given to a detailed study of the properties of a parabolic equation with a Bessel operator acting on all spatial variables. Maximum and minimum principle for the singular parabolic equation as well as the uniqueness of its solution were given. Using the form of fundamental solution of the singular parabolic equation, mean value theorems were obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzamili, K. About mean value theorems for the singular parabolic equation. Bol. Soc. Mat. Mex. 29, 48 (2023). https://doi.org/10.1007/s40590-023-00522-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-023-00522-2

Keywords

Mathematics Subject Classification

Navigation