Skip to main content
Log in

Periodic solutions and stability in a nonlinear neutral system of differential equations with infinite delay

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of periodic solutions of the nonlinear neutral system of differential equations

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}x\left( t\right) =A\left( t\right) x\left( t\right) +\frac{\mathrm{d}}{\mathrm{d}t} Q\left( t,x\left( t-g\left( t\right) \right) \right) +\int _{-\infty }^{t}D\left( t,s\right) F\left( x\left( s\right) \right) \mathrm{d}s. \end{aligned}$$

Using Krasnoselskii’s fixed point theorem, we obtain the existence of periodic solution and by contraction mapping principle we obtain the uniqueness of periodic solution and stability of the zero solution. Our results extend some earlier publications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biçer, E., Tunç, C.: On the existence of periodic solutions to non-linear neutral differential equations of first order with multiple delays. Proc. Pak. Acad. Sci. 52(1), 89–94 (2015)

    MathSciNet  Google Scholar 

  2. Brayton, R.K.: Bifurcation of periodic solutions in a nonlinear difference–differential equation of neutral type. Q. Appl. Math. 24(3), 215–224 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  4. Burton, T.A.: A fixed point theorem of Krasnoselskii. Appl. Math. Lett. 11(1), 85–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burton, T.A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover Publications, New York (2006)

    MATH  Google Scholar 

  6. Burton, T.A., Hatvani, L.: Stability theorems for non-autonomous functional differential equations by Liapunov functionals. Tohoku Math. J. 41, 295–306 (1989)

    Article  Google Scholar 

  7. Burton, T.A.: Perron-type stability theorems for neutral equations. Nonlinear Anal. 55, 285–297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burton, T.A., Furumochi, T.: Fixed points and problems in stability theory. Dynam. Syst. Appl. 10, 89–116 (2001)

    MATH  Google Scholar 

  9. Burton, T.A., Furumochi, T.: A note on stability by Schauder’s theorem. Funkc. Ekvacioj-Ser. Int. 44(1), 73–82 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Burton, T.A., Furumochi, T.: Krasnoselskii’s fixed point theorem and stability. Nonlinear Anal. 4(49), 445–454 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chicone, C.: Ordinary Differential Equations with Applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  12. Ding, T.R., Iannacci, R., Zanolin, F.: On periodic solutions of sublinear Duffing equations. J. Math. Anal. Appl. 158, 316–332 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gopalsamy, K., He, X., Wen, L.: On a periodic neutral logistic equation. Glasg. Math. J. 33, 281–286 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gopalsamy, K., Zhang, B.G.: On a neutral delay-logistic equation. Dynam. Stab. Syst. 2, 183–195 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Gyori, I., Hartung, F.: Preservation of stability in a linear neutral differential equation under delay perturbations. Dynam. Syst. Appl. 10, 225–242 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Gyori, I., Ladas, G.: Positive solutions of integro-differential equations with unbounded delay. J. Integral Equ. Appl. 4, 377–390 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hale, J.: Ordinary Differential Equations. Robert E. Krieger Publishing Company, New York (1980)

    MATH  Google Scholar 

  18. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  19. Hatvani, L.: Annulus arguments in the stability theory for functional differential equations. Differ. Integral Equ. 10(1), 975–1002 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Islam, M.N., Raffoul, Y.N.: Periodic solutions of neutral nonlinear system of differential equations with functional delay. J. Math. Anal. Appl. 331, 1175–1186 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, C.H., Luo, J.W.: Stability of an integro-differential equation. Comput. Math. Appl. 57, 1080–1088 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, C.H., Luo, J.W.: Stability in functional differential equations established using fixed point theory. Nonlinear Anal. 68, 3307–3315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, C.H., Luo, J.W.: Fixed points and stability in neutral differential equations with variable delays. Proc. Am. Math. Soc. 136(3), 909–918 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  25. Kun, L.Y.: Periodic solutions of a periodic neutral delay equation. J. Math. Anal. Appl. 214, 11–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lakshmikantham, V., Deo, S.G.: Methods of Variation of Parameters for Dynamical Systems. Gordon and Breach Science Publishers, Australia (1998)

    MATH  Google Scholar 

  27. Logemann, H., Pandol, L.: A note on stability and stabilizability of neutral systems. IEEE Trans. Autom. Control 39(1), 138–143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maroun, M., Raffoul, Y.N.: Periodic solutions in nonlinear neutral difference equations with functional delay. J. Korean Math. Soc. 42, 255–268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Raffoul, Y.N.: Stability in neutral nonlinear differential equations with functional delays using fixed-point theory. Math. Comput. Model. 40, 691–700 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rubanik, V.P.: Oscillations of Quasilinear Systems with Retardation. Nauka, Moscow (1969)

    Google Scholar 

  31. Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  32. Spong, M.W.: A theorem on neutral delay systems. Syst. Control Lett. 6(4), 291–294 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tunç, C.: New results on the existence of periodic solutions for Rayleigh equation with state-dependent delay. J. Math. Fundam. Sci. 45A(2), 154–162 (2013)

    Article  MathSciNet  Google Scholar 

  34. Weikard, R.: Floquet theory for linear differential equations with meromorphic solutions. Electron. J. Qual. Theory Differ. Equ. 8, 1–6 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. Tokyo Mathematical Society, Japan (1966)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelouaheb Ardjouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesmouli, M.B., Ardjouni, A. & Djoudi, A. Periodic solutions and stability in a nonlinear neutral system of differential equations with infinite delay. Bol. Soc. Mat. Mex. 24, 239–255 (2018). https://doi.org/10.1007/s40590-016-0155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0155-1

Keywords

Mathematics Subject Classification

Navigation