Skip to main content
Log in

Dyukarev–Stieltjes parameters of the truncated Hausdorff matrix moment problem

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

We obtain a new multiplicative decomposition of the resolvent matrix of the non-degenerate truncated Hausdorff matrix moment (THMM) problem in the case of odd and even number of moments with the help of Dyukarev–Stieltjes matrix parameters (DSMP). Our result generalizes the Dyukarev representation of the resolvent matrix of the truncated Stieltjes matrix moment problem published in (Math Notes 75(1–2):66–82, 2004). In the scalar case, these parameters appear in the celebrated Stieltjes’s (1894) work Recherches sur les fractions continues and are used to establish the determinateness of the moment problem. We also obtain explicit relations between four families of orthogonal matrix polynomials on [ab] together with their matrix polynomials of the second kind and the DSMP of the THMM problem. Additionally, we derive new representations of the Christoffel–Darboux kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas with Applications to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  2. Choque Rivero, A.E.: Multiplicative structure of the resolvent matrix for the truncated matricial Hausdorff moment problem. Interpolation, Schur functions and moment problems II. Oper. Theory Adv. Appl. 226, 193–210 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Choque Rivero, A.E.: The resolvent matrix for the matricial Hausdorff moment problem expressed by orthogonal matrix polynomials. Complex Anal. Oper. Theory 7(4), 927–944 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choque-Rivero, A.E.: From the Potapov to the Krein–Nudel’man representation of the resolvent matrix of the truncated Hausdorff matrix moment problem. Bol. Soc. Mat. Mex. 21(2), 233–259 (2015)

  5. Choque Rivero, A.E.: Decompositions of the Blaschke–Potapov factors of the truncated Hausdorff matrix moment problem. The case of odd number of moments. Commun. Math. Anal. 17(2), 66–81 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Choque Rivero, A.E.: Decompositions of the Blaschke–Potapov factors of the truncated Hausdorff matrix moment problem The case of even number of moments. Commun. Math. Anal. 17(2), 82–97 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Choque Rivero, A.E.: On Dyukarev’s resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials. Linear Algebra Appl. 474, 44–109 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choque Rivero, A.E., Dyukarev, Yu.M., Fritzsche, B., Kirstein, B.: A truncated matricial moment problem on a finite interval. Interpolation, Schur functions and moment problems. Oper. Theory: Adv. Appl. 165, 121–173 (2006)

  9. Choque Rivero, A.E., Dyukarev, YuM, Fritzsche, B., Kirstein, B.: A truncated matricial moment problem on a finite interval. The case of an odd number of prescribed moments. System theory, Schur algorithm and multidimensional analysis. Oper. Theory: Adv. Appl. 176, 99–174 (2007)

    MATH  Google Scholar 

  10. Choque Rivero, A.E., Maedler, C.: On Hankel positive definite perturbations of Hankel positive definite sequences and interrelations to orthogonal matrix polynomials. Complex Anal. Oper. Theory 8(8), 121–173 (2014)

    Article  MathSciNet  Google Scholar 

  11. Damanik, D., Pushnitski, A., Simon, B.: The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, 1–85 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Dette, H., Studden, W.J.: Matrix measures, moment spaces and Favard’s theorem on the interval \([0,1]\) and \([0,\infty )\). Linear Algebra Appl. 345, 169–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duran, A.: Markov’s theorem for orthogonal matrix polynomials. Can. J. Math. 48(6), 1180–1195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dym, H.: On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy. Integral Equ. Oper. Theory 12, 757–812 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyukarev, YuM: The multiplicative structure of resolvent matrices of interpolation problems in the Stieltjes class. Vestnik Kharkov Univ. Ser. Mat. Prikl. Mat. i Mekh. 458, 143–153 (1999)

    MATH  Google Scholar 

  16. Dyukarev, YuM: Factorization of operator functions of multiplicative Stieltjes class (Russian). Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 9, 23–26 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Dyukarev, YuM: Indeterminacy criteria for the Stieltjes matrix moment problem. Math. Notes 75(1–2), 66–82 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyukarev, YuM, Choque Rivero, A.E.: A matrix version of one Hamburger theorem. Mat. Zametki 91(4), 522–529 (2012)

    Article  Google Scholar 

  19. Dyukarev, Yu.M., Serikova, I.Yu.: Complete indeterminacy of the Nevanlinna–Pick problem in the class S[a, b]. Russ. Math. (Iz. VUZ) 51(11), 17–29 (2007)

  20. Fritzsche, B., Kirstein, B., Mädler, C.: On Hankel nonnegative definite sequences, the canonical Hankel parametrization, and orthogonal matrix polynomials. Complex Anal. Oper. Theory 5(2), 447–511 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fuhrman, P.A.: Orthogonal matrix polynomials and system theory. Rend. Sem. Mat. Univ. Politec. Torino 68–124 (1987)

  22. Gantmacher, F.R., Krein, M.G.: Oscillation Matrices and Small Oscillations of Mechanical Systems (Russian). Gostekhizdat, Moscow (1941)

    MATH  Google Scholar 

  23. Geronimo, J.S.: Scattering theory and matrix orthogonal polynomials on the real line. Circuits Syst. Signal Process 1(3–4), 471–495 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kovalishina, I.V.: New Aspects of the Classical Moment Problems. Second doctoral thesis (in Russian), Institute of Railway-Transport Engineers (1986)

  25. Kovalishina, I.V.: Analytic theory of a class of interpolation problems. Izv. Math. 47(3), 455–497 (1983)

    MathSciNet  Google Scholar 

  26. Krein, M.G.: Fundamental aspects of the representation theory of hermitian operators with deficiency \((m, m)\). Ukr. Mat. Zh. 1(2), 3–66 (1949)

    MATH  Google Scholar 

  27. Krein, M.G.: Infinite \(J\)-matrices and a matrix moment problem. Dokl. Akad. Nauk 69(2), 125–128 (1949)

    MathSciNet  Google Scholar 

  28. Miranian, L.: Matrix-valued orthogonal polynomials on the real line: some extensions of the classical theory. J. Phys. A: Math. Gen. 38, 5731–5749 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Potapov, V.P.: The multiplicative structure of J-nonexpansive matrix functions. Trudy Mosk. Mat. Obs. 4, 125–236 (1955)

    Google Scholar 

  30. Serikova, IYu.: The multiplicative structure of resolvent matrix of the moment problem on the finite interval (case of even numbers of moments). Vestnik Kharkov Univ. Ser. Mat. Prikl. Mat. i Mekh. 790, 132–139 (2007)

    MATH  Google Scholar 

  31. Serikova, IYu.: Indeterminacy criteria for the Nevanlinna-Pick interpolation problem in class \(R[a, b]\). Zb. Pr. Inst. Mat. NAN Ukr. 3(4), 126–142 (2006)

    MATH  Google Scholar 

  32. Simon, B.: The classical problem as a self-adjoint finite difference operator. Adv. Math. 137, 82–203 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stieltjes, T.J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Math. (6), 4(1):JiJiv, J1J35, 1995. Reprint of the 1894 original (French)

  34. Thiele, H.: Beiträge zu matriziellen Potenzmomentenproblemen, PhD Thesis. Leipzig University (2006)

Download references

Acknowledgments

The author is grateful to the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdon E. Choque-Rivero.

Additional information

The author is supported by Conacyt Grant No. 153184, CIC-UMSNH México.

Appendices

Appendix 1: Orthogonal matrix polynomials on [ab]

Let us reproduce some notions on OMP which were introduced in [10]. Let P be a complex \(p \times q\) matrix polynomial. For all \(n\in \mathbb N_0\), let

$$\begin{aligned} Z^{[P]}_{n}:=[A_0,A_1,\cdots ,A_n], \end{aligned}$$

where \((A_j)_{j=0}^\infty \) is the unique sequence of complex \(p \times q\) matrices such that for all \(z\in \mathbb C\) the polynomial P admits the representation \(P(z)=\sum _{j=0}^\infty z^jA_j\).

Furthermore, we denote by \(\mathrm{deg}\, P:=\sup \{j\in \mathbb N_0: A_j\ne 0_{p\times q}\}\) the degree of P. Observe that in the case \(P(z)=0_{p\times q}\) for all \(z\in \mathbb C\) we have thus \(\mathrm{deg}\, P=-\infty \). If \(k:=\mathrm{deg}\, P\ge 0\), we refer to \(A_k\) as the leading coefficient of P.

For all \(k\in \mathbb N_0\) and all \(\kappa \in \mathbb N_0\) with \(k\le \kappa \), let \({\mathbb Z}_{k,\kappa }:=\{n\in \mathbb N_0, k\le n\le \kappa \}\).

Definition 8

Let \(\kappa \in \mathbb N_0\cup \{\infty \}\), and let \((s_j)_{j=0}^{2\kappa }\) be a sequence of complex \(q\times q\) matrices. A sequence \((P_k)_{k=0}^\kappa \) of complex \(q\times q\) matrix polynomials is called a monic left orthogonal system of matrix polynomials with respect to \((s_j)_{j=0}^{2\kappa }\) if the following three conditions are fulfilled.

  1. (I)

    \(\deg P_k =k\) for all \(k\in {\mathbb Z}_{0,\kappa }\).

  2. (II)

    \(P_k\) has the leading coefficient \(I_q\) for all \(k\in {\mathbb Z}_{0,\kappa }\).

  3. (III)

    \(Z_n^{[P_j]}H_n(Z_n^{[P_k]})^*= 0_{q\times q}\) for all \(j,k\in {\mathbb Z}_{0,\kappa }\) with \(j\ne k\), where \(n:=\max \{j,k\}\).

Remark 7

[10, Remark 3.6] Let \(n\in \mathbb N_0\cup \{\infty \}\), and let \((s_j)_{j=0}^{2n}\) be a Hausdorff positive definite sequence, i.e., the corresponding Hankel block matrix \(H_{n}\) is positive definite. Denote by \((P_k)_{k=0}^n\) the monic left orthogonal system of matrix polynomials with respect to \((s_j)_{j=0}^{2n}\). Let \(\sigma \) be a nonnegative Hermitian \(q\times q\) measure on \(\mathbb R\) satisfying \(s_j=\int _{[a,b]}t^j \mathrm{d}\sigma (t)\) for \(0\le j\le 2n\). Thus,

$$\begin{aligned} \int _{[a,b]}P_j\mathrm{d}\sigma P_k^*=\left\{ \begin{array}{cc} \widehat{H}_j, &{}\quad \text{ if }\ \ j=k, \\ 0_q, &{}\quad \text{ if }\ \ j\ne k\\ \end{array} \right. \end{aligned}$$

for all \(0\le j,k\le n\) where \(\widehat{H}_j\) denotes the Schur complement of \(H_{j-1}\) in \(H_j\); see (1.9).

Definition 9

Let \((s_k)_{k=0}^{2j}\) be a Hausdorff positive definite sequence. Let

$$\begin{aligned} P_{1,0}(z)&:= I_q, \ \ P_{2,0}(z):=I_q, \ Q_{1,0}(z):=0_{q}, \ Q_{2,0}(z,a,b):=-(u_{2,0}+z\,s_0),\\ P_{1,j}(z)&:=(-Y^{*}_{1,j}H^{-1}_{1,j-1},I_q)R_{j}(z)v_{j}, \quad 1\le j\le n,\\ P_{2,j}(z,a,b)&:=(-Y^{*}_{2,j}H^{-1}_{2,j-1},I_q)R_{j}(z)v_{j},\quad 1\le j\le n-1,\\ Q_{1,j}(z)&:=-(-Y^{*}_{1,j}H^{-1}_{1,j-1},I_q)R_{1,j}(z) u_{1,j},\quad 1\le j\le n, \end{aligned}$$

and

$$\begin{aligned} Q_{2,j}(z,a,b):=-(-Y^{*}_{2,j}H^{-1}_{2,j-1},I_q)R_{j}(z) (u_{2,j}+zv_{j}s_{0}), \quad 1\le j\le n-1. \end{aligned}$$

Definition 10

Let \(K_{k,j}\), \(\widetilde{u}_{k,j}\), \(\widetilde{Y}_{k,j}\), for \(k=1,2\), \(R_j\) and \(v_j\) be as in (1.5), (1.6), (1.21), (1.22), (1.23), (1.7) and (1.8), respectively.

Let \((s_k)_{k=0}^{2j+1}\) be a Hausdorff positive definite sequence. Let

$$\begin{aligned} \Gamma _{1,0}(z)&:=I_q, \, \Gamma _{2,0}(z):=I_q, \ \ \Theta _{1,0}(z):=s_0,\, \Theta _{2,0}(z):=-s_0 \end{aligned}$$

for all \(z\in \mathbb C\). For \(k\in \{1,2\}\) and \(1\le j\le n\), define

$$\begin{aligned} \Gamma _{1,j}(z,b)&:=(-\widetilde{Y}^{*}_{1,j}K^{-1}_{1,j-1},I_q)R_{j}(z)v_{j},\nonumber \\ \Gamma _{2,j}(z,a)&:=(-\widetilde{Y}^{*}_{2,j}K^{-1}_{2,j-1},I_q)R_{j}(z)v_{j}, \end{aligned}$$
(4.21)
$$\begin{aligned} \Theta _{1,j}(z,b)&:= (-\widetilde{Y}^{*}_{1,j}K^{-1}_{1,j-1},I_q)R_{j}(z)\widetilde{u}_{1,j},\nonumber \\ \Theta _{2,j}(z,a)&:= (-\widetilde{Y}^{*}_{2,j}K^{-1}_{2,j-1},I_q)R_{j}(z)\widetilde{u}_{2,j} \end{aligned}$$
(4.22)

for all \(z\in \mathbb C\).

We usually omit the dependence of the polynomials \(P_{k,j}\), \(Q_{k,j}\), \(\Gamma _{k,j}\) and \(\Theta _{k,j}\) for \(k=1,2\) on the parameters a and b.

In [3], (resp. [34]) it was proved that polynomials \(P_{k,j}\) (resp. \(\Gamma _{k,j}\)) for \(k=1,2\) are in fact OMP on [ab]. In [4] some properties of second kind polynomials \(Q_{k,j}\) and \(\Theta _{k,j}\) for \(k=1,2\) were discussed. In [10] explicit interrelations between \(P_{k,j}\), \(\Gamma _{k,j}\) and their second kind polynomials were studied.

For the sake of completeness in the following remark, we reproduce explicit interrelations between the matrices \(\widehat{H}_{k,j}\), \( \widehat{K}_{k,j}\) and the polynomials \(P_{1,j}\), \(Q_{2,j}\), \(\Gamma _{1,j}\), \(\Theta _{2,j}\) considered in Corollary 3.4 and Corollary 3.10 in [4].

Remark 8

Let \(\widehat{H}_{k,j}\), \( \widehat{K}_{k,j}\), for \(k=1,2\), \(P_{1,j}\), \(Q_{2,j}\), \(\Gamma _{1,j}\) and \(\Theta _{2,j}\) be as in (1.9), (1.10), (1.24), (1.25) and Definitions 9 and 10, respectively. The following equalities then hold

$$\begin{aligned} \widehat{H}_{1,j}=&-P_{1,j}(a)\Theta _{2,j}^*(a),\nonumber \\ \widehat{H}_{2,j}=&-Q_{2,j}(a)\Gamma _{1,j+1}^{*}(a), \end{aligned}$$
(4.23)
$$\begin{aligned} \widehat{K}_{1,j}&=\Gamma _{1,j}(a)Q_{2,j}^*(a), \nonumber \\ \widehat{K}_{2,j}&=\Theta _{2,j}(a)P_{1,j+1}^{*}(a). \end{aligned}$$
(4.24)

Finally, let us recall the following well-known result below.

Lemma 1

[1, Proposition 8.2.4] Let \(A:=\left( \begin{array}{cc} A_{11} &{} A_{12} \\ A_{12}^* &{} A_{22} \end{array} \right) \) be a Hermitian \((n+m)\times (n+m)\) matrix. Therefore, the following statements are equivalent:

  1. (i)

    \(A>0\).

  2. (ii)

    \(A_{11}>0\) and \(A_{12}^*A_{11}^{-1}A_{12}<A_{22}\).

  3. (iii)

    \(A_{22}>0\) and \(A_{12}A_{22}^{-1}A_{12}^*<A_{11}\).

Appendix 2: The Christoffel–Darboux kernel

In this section, we indicate a new form of the Christoffel–Darboux (CD) kernel in terms of the polynomials \(\Gamma _{2,j}\) and \(\Theta _{2,j}\). We also consider the relation between the CD kernel and the DSMP. Additionally, we also introduce new CD type kernels.

Let us recall the three-term recurrence relation for the OMP \(P_{1,j}\) via the Schur complements \(\widehat{H}_{1,j}\); see [7, Definition 8.1].

Definition 11

Let \((s_k)_{k=0}^{\infty }\) be a positive definite sequence, i.e., the block matrices \(H_{1,j}\) for \(j\in \mathbb N_0\) are positive definite. Let \(\widetilde{H}_{2,j}\) be as in (1.4) and \(\widehat{H}_{1,j}\) be defined by (1.9). Define \(A_{0}:=s_1s_0^{-1}\), \(B_{-1}:=0_q\), \(B_{0}:=\widehat{H}_{1,0}^{-1}\widehat{H}_{1,1}\). For \(1\le j\le n\), let \(A_{j}:=E_{j}\widehat{H}_{1,j}^{-1}\), \(B_{j}:=\widehat{H}_{1,j}^{-1}\widehat{H}_{1,j+1}\), with \(E_{j}:=(-Y_{1,j}^*H_{1,j-1}^{-1},\,I)\widetilde{H}_{2,j} \left( \begin{array}{c} -H_{1,j-1}^{-1}Y_{1,j} \\ I_q \end{array} \right) \). The ordered pair \([(A_k)_{k=0}^\infty ,(B_k)_{k=0}^\infty ]\) is called the Favard pair (abbreviated as F-pair) associated with \((s_k)_{j=0}^{\infty }\).

The following proposition is proven in [10, Proposition 3.7]; see also [7, Remark 8.7].

Proposition 8

The polynomials \(P_{1,j}\) satisfy the recurrence relations

$$\begin{aligned} x P_{1,j}(x)=B_{j-1}^*P_{1,j-1}(x)+A_{j}P_{1,j}(x)+P_{1,j+1}(x),\quad j\ge 0, \end{aligned}$$

with initial conditions \(P_{1,-1}(x)=0_q\) and \(P_{1,0}(x)=I_q\).

Now we turn to the notion of the matrix CD kernel, which is defined for \(z,\, w\in \mathbb C\) by

$$\begin{aligned} K_n(z,w):=\sum _{j=0}^n P_{1,j}^*(\bar{z})\widehat{H}_{1,j}^{-1}P_{1,j}(w), \end{aligned}$$

where \(P_{1,j}\), according to [11, Formula (2.22) and (2.23)], are left OMP. In the Damanik et al. [11] work, the orthonormal matrix polynomial \(\widehat{H}_{1,j}^{-\frac{1}{2}}P_{1,j}\) instead of the monic OMP \(P_{1,j}\) is employed.

Different representations of the matrix kernel \(K_n\) were studied in [11, p. 34], [21, Theorem 2.6], [14, Formula (3.29)], [13, Lemma 2.1] and by other authors.

Proposition 9

Let a be real number. Let \(H_{1,n}\), \(K_{2,n}\) defined by (1.2) and (1.6) be positive definite block matrices. Let \(R_n\), \(v_n\), \(\widehat{H}_{1,n}\), \(P_{1,n}\), \(\Gamma _{2,n}\) and \(\Theta _{2,n}\) be as in (1.7), (1.8), (1.9), as well as Definitions 9 and 10. Therefore, the following equalities hold for \(z\in \mathbb C\):

$$\begin{aligned} K_n(z,a)&=v_n^*R_n^*(\bar{z})H_{1,n}^{-1}R_n(a)v_n \end{aligned}$$
(4.25)
$$\begin{aligned}&=\frac{P^*_{1,n}(\bar{z})\widehat{H}_{1,n}^{-1}P_{1,n+1}(a) -P^*_{1,n+1}(\bar{z})\widehat{H}_{1,n}^{-1}P_{1,n}(a)}{z-a}\end{aligned}$$
(4.26)
$$\begin{aligned}&=(M_0+\cdots +M_n)+\cdots +(-1)^{n}(z-a)^j M_0L_0M_1\cdots L_{n-1}M_n \end{aligned}$$
(4.27)
$$\begin{aligned}&=-\Gamma _{2,n}^*(\bar{z},a) \Theta _{2,n}^{*^{-1}}(a,a). \end{aligned}$$
(4.28)

Proof

Equality (4.25) was proven in [3, Proposition 4.8] as an additive representation of block matrix \(\gamma ^{(2j)}\); see (1.12). Equality (4.26) is verified using Definition 11 and the proof of [28, Lemma 3]. Equality (4.27) readily follows from (4.7). Finally, equality (4.28) is a consequence of (1.17). \(\square \)

Equality (4.25) for \(a=0\) first appeared in [24].

Observe that equalities (4.25)–(4.28) are also valid if instead of real a one uses a complex variable w. This generalization will be considered elsewhere.

Now we introduce new CD type kernels.

Definition 12

Let \([a,b]\subset \mathbb R\), and let \((s_j)_{j=0}^{2n}\), \((s_j)_{j=0}^{2n+1}\) be Hausdorff positive definite sequences. Let \(Q_{2,j}\), \(\Gamma _{1,j}\), \(\Theta _{2,j}\), \(\widehat{H}_{2,j}\), \(\widehat{K}_{1,j}\) and \(\widehat{K}_{2,j}\) as in Definition 10, 9, (1.10), (1.24) and (1.25), respectively. Define

$$\begin{aligned} K^{(1)}_{n-1}(z,a,b):=&\,s_0+\sum _{j=0}^{n-1} Q_{2,j}^*(\bar{z})\widehat{H}_{2,j}^{-1}Q_{2,j}(a),\\ K^{(2)}_n(z,a,b):=&\sum _{j=0}^n \Gamma _{1,j}^*(\bar{z})\widehat{K}_{1,j}^{-1}\Gamma _{1,j}(a),\\ K^{(3)}_n(z,a):=&\sum _{j=0}^n \Theta _{2,j}^*(\bar{z})\widehat{K}_{2,j}^{-1}\Theta _{2,j}(a). \end{aligned}$$

Proposition 10

Under the same conditions as Proposition 9 and Definition 12 the following equalities hold:

$$\begin{aligned} K^{(1)}_{n-1}(z,a,b)&=s_0+ (u_{2,n-1}^*-z s_0 v_{n-1}^*)R_{n-1}^*(\bar{z}) H_{2,n-1}^{-1}R_{n-1}(a)(u_{2,n-1}-av_{n-1}s_0) \nonumber \\&=\Theta _{1,n}^*(\bar{z},b) \Gamma _{1,n}^{*^{-1}}(a,b), \end{aligned}$$
(4.29)
$$\begin{aligned} K^{(2)}_{n}(z,a,b)=\,&v_n^*R_n^*(\bar{z})K_{1,n}^{-1}R_n(a)v_n =P_{2,n}^*(\bar{z},a,b) Q_{2,n}^{*^{-1}}(a,b,a), \end{aligned}$$
(4.30)
$$\begin{aligned} K^{(3)}_{n}(z,a)=\,&\widetilde{u}_{2,n}^*R_n^*(\bar{z})K_{2,n}^{-1}R_n(a) \widetilde{u}_{2,n} =-Q_{1,n+1}^{*}(\bar{z})P_{1,n+1}^{*^{-1}}(a). \end{aligned}$$
(4.31)

Proof

The first equality of (4.29) follows from (1.13) and [4, Equation (3.15)] The second equality of (4.29) follows from [4, Equation (3.19)] or (1.18).

Furthermore, the first equality of (4.30) [resp. (4.31)] follows from (1.27) [resp. (1.28)] and [34, p. 87]. Finally, the second equality of (4.30) [resp. (4.31)] follows from [4, Equality (3.32)] and [4, Equality (3.31)], respectively. \(\square \)

Further properties of the CD type kernels will be considered elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choque-Rivero, A.E. Dyukarev–Stieltjes parameters of the truncated Hausdorff matrix moment problem. Bol. Soc. Mat. Mex. 23, 891–918 (2017). https://doi.org/10.1007/s40590-015-0083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-015-0083-5

Keywords

Navigation