Skip to main content

Advertisement

Log in

Biology and Function of Exo-Polysaccharides from Human Fungal Pathogens

  • Mycology (R Cramer, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Environmental fungi such as Cryptococcus neoformans and Aspergillus fumigatus must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings.

Recent Findings

This review focuses on exo-polysaccharides, chains of sugars that are transported out of the cell and spread to the local environment. Major exo-polysaccharides for C. neoformans and A. fumigatus are glucuronoxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients.

Summary

Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Gow NAR, Latge J-P, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. 2017;5.

  2. Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med. 2014;5:a019273.

    PubMed  Google Scholar 

  3. Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J, Szałapata K, Nowak A, Jaszek M, et al. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol. 2015;31:1823–44.

    PubMed  PubMed Central  Google Scholar 

  4. • Wang ZA, Li LX, Doering TL. Unraveling synthesis of the cryptococcal cell wall and capsule. Glycobiology. 2018;28:719–30. Recent review on GXM and cryptococcal cell wall synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. • Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 2013;9:e1003575. Foundational paper on the role of GAG during infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Maghrabi F, Denning DW. The Management of chronic pulmonary aspergillosis: the UK National Aspergillosis Centre Approach. Curr Fungal Infect Rep. 2017;11:242–51.

    PubMed  PubMed Central  Google Scholar 

  7. Patterson KC, Strek ME. Diagnosis and treatment of pulmonary aspergillosis syndromes. Chest. 2014;146:1358–68.

    PubMed  Google Scholar 

  8. Bongomin F, Gago S, Oladele OR, Denning WD. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi. 2017;3.

    PubMed Central  Google Scholar 

  9. Gerson SL, Talbot GH, Hurwitz S, Strom BL, Lusk EJ, Cassileth PA. Prolonged granulocytopenia: the major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med. 1984;100:345–51.

    CAS  PubMed  Google Scholar 

  10. King J, Henriet SSV, Warris A. Aspergillosis in chronic granulomatous disease. J Fungi (Basel, Switzerland). 2016;2:15.

    Google Scholar 

  11. Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax. 2015;70:270–7.

    PubMed  Google Scholar 

  12. Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, et al. Molecular identification of Aspergillus species collected for the transplant-associated infection surveillance network. J Clin Microbiol. 2009;47:3138–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Perfect JR, Cox GM, Lee JY, Kauffman CA, de Repentigny L, Chapman SW, et al. The impact of culture isolation of Aspergillus species: a hospital-based survey of aspergillosis. Clin Infect Dis. 2001;33:1824–33.

    CAS  PubMed  Google Scholar 

  14. Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin N Am. 2016;30:179–206.

    Google Scholar 

  15. Elsegeiny W, Marr KA, Williamson PR. Immunology of cryptococcal infections: developing a rational approach to patient therapy. Front Immunol. 2018;9:651.

    PubMed  PubMed Central  Google Scholar 

  16. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–81.

    PubMed  PubMed Central  Google Scholar 

  17. Denham ST, Wambaugh MA, Brown JCS. How environmental fungi cause a range of clinical outcomes in susceptible hosts. J Mol Biol. 2019;431:2982–3009.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Powderly WG, Cloud GA, Dismukes WE, Saag MS. Measurement of cryptococcal antigen in serum and cerebrospinal fluid: value in the management of AIDS-associated cryptococcal meningitis. Clin Infect Dis. 1994;18:789–92.

    CAS  PubMed  Google Scholar 

  19. Takazono T, Izumikawa K. Recent advances in diagnosing chronic pulmonary aspergillosis. Front Microbiol. 2018;9:1810.

    PubMed  PubMed Central  Google Scholar 

  20. Skripuletz T, Schwenkenbecher P, Pars K, Stoll M, Conzen J, Bolat S, et al. Importance of follow-up cerebrospinal fluid analysis in cryptococcal meningoencephalitis. Dis Markers. 2014;2014:162576–162,576.

    PubMed  PubMed Central  Google Scholar 

  21. Doering TL. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol. 2009;63:223–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Buchanan KL, Murphy JW. What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis. 1998;4:71–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Denham ST, Verma S, Reynolds RC, Worne CL, Daugherty JM, Lane TE, et al. Regulated release of cryptococcal polysaccharide drives virulence and suppresses immune infiltration into the central nervous system. Infect Immunol. 2018:86.

  24. O’Meara TR, Alspaugh JA. The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev. 2012;25:387–408.

    PubMed  PubMed Central  Google Scholar 

  25. Frases S, Nimrichter L, Viana NB, Nakouzi A, Casadevall A. Cryptococcus neoformans capsular polysaccharide and exopolysaccharide fractions manifest physical, chemical, and antigenic differences. Eukaryot Cell. 2008;7:319–27.

    CAS  PubMed  Google Scholar 

  26. • Speth C, Rambach G, Lass-Flörl C, Howell PL, Sheppard DC. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence. 2019:976–983. Recent review on GAG biology and function.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pontes B, Frases S. The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools. Front Microbiol. 2015;6:640.

    PubMed  PubMed Central  Google Scholar 

  28. Maier EJ, Haynes BC, Gish SR, Wang ZA, Skowyra ML, Marulli AL, et al. Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation. Genome Res. 2015;25:690–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cherniak R, Morris LC, Anderson BC, Meyer SA. Facilitated isolation, purification, and analysis of glucuronoxylomannan of Cryptococcus neoformans. Infect Immun. 1991;59:59–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McFadden DC, De Jesus M, Casadevall A. The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J Biol Chem. 2006;281:1868–75.

    CAS  PubMed  Google Scholar 

  31. Cherniak R, Valafar H, Morris LC, Valafar F. Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronoxylomannans with a computer-simulated artificial neural network. Clin Diagn Lab Immunol. 1998;5:146–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Turner SH, Cherniak R, Reiss E, Kwon-Chung KJ. Structural variability in the glucuronoxylomannan of Cryptococcus neoformans serotype A isolates determined by 13C NMR spectroscopy. Carbohydr Res. 1992;233:205–18.

    CAS  PubMed  Google Scholar 

  33. Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol. 2009;68:133–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Belay T, Cherniak R, Kozel TR, Casadevall A. Reactivity patterns and epitope specificities of anti-Cryptococcus neoformans monoclonal antibodies by enzyme-linked immunosorbent assay and dot enzyme assay. Infect Immun. 1997;65:718–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McFadden DC, Fries BC, Wang F, Casadevall A. Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot Cell. 2007;6:1464–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Janbon G, Himmelreich U, Moyrand F, Improvisi L, Dromer F. Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol. 2001;42:453–67.

    CAS  PubMed  Google Scholar 

  37. Ellerbroek PM, Lefeber DJ, van Veghel R, Scharringa J, Brouwer E, Gerwig GJ, et al. O-acetylation of cryptococcal capsular glucuronoxylomannan is essential for interference with neutrophil migration. J Immunol. 2004;173:7513–20.

    CAS  PubMed  Google Scholar 

  38. Heiss C, Klutts JS, Wang Z, Doering TL, Azadi P. The structure of Cryptococcus neoformans galactoxylomannan contains beta-D-glucuronic acid. Carbohydr Res. 2009;344:915–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chaka W, Verheul AF, Vaishnav VV, Cherniak R, Scharringa J, Verhoef J, et al. Cryptococcus neoformans and cryptococcal glucuronoxylomannan, galactoxylomannan, and mannoprotein induce different levels of tumor necrosis factor alpha in human peripheral blood mononuclear cells. Infect Immun. 1997;65:272–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. De Jesus M, Nicola AM, Frases S, Lee IR, Mieses S, Casadevall A. Galactoxylomannan-mediated immunological paralysis results from specific B cell depletion in the context of widespread immune system damage. J Immunol (Baltimore, Md.: 1950). 2009;183:3885–94.

    Google Scholar 

  41. Pericolini E, Cenci E, Monari C, De Jesus M, Bistoni F, Casadevall A, et al. Cryptococcus neoformans capsular polysaccharide component galactoxylomannan induces apoptosis of human T-cells through activation of caspase-8. Cell Microbiol. 2006;8:267–75.

    CAS  PubMed  Google Scholar 

  42. Villena SN, Pinheiro RO, Pinheiro CS, Nunes MP, Takiya CM, DosReis GA, et al. Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell Microbiol. 2008;10:1274–85.

    CAS  PubMed  Google Scholar 

  43. • Decote-Ricardo D, LaRocque-de-Freitas IF, Rocha JDB, Nascimento DO, Nunes MP, Morrot A, et al. Immunomodulatory role of capsular polysaccharides constituents of Cryptococcus neoformans. Front Med. 2019;6:129. Recent review on GXM’s immunomodulatory properties.

    Google Scholar 

  44. De Jesus M, Nicola AM, Rodrigues ML, Janbon G, Casadevall A. Capsular localization of the Cryptococcus neoformans polysaccharide component galactoxylomannan. Eukaryot Cell. 2009;8:96–103.

    PubMed  Google Scholar 

  45. Wills EA, Roberts IS, Del Poeta M, Rivera J, Casadevall A, Cox GM, et al. Identification and characterization of the Cryptococcus neoformans phosphomannose isomerase-encoding gene, MAN1, and its impact on pathogenicity. Mol Microbiol. 2001;40:610–20.

    CAS  PubMed  Google Scholar 

  46. Bar-Peled M, Griffith CL, Ory JJ, Doering TL. Biosynthesis of UDP-GlcA, a key metabolite for capsular polysaccharide synthesis in the pathogenic fungus <em>Cryptococcus neoformans</em>. Biochem J. 2004;381:131–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bar-Peled M, Griffith CL, Doering TL. Functional cloning and characterization of a UDP-glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans < elucidates UDP-xylose synthesis. Proc Natl Acad Sci. 2001;98:12003–12,008.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moyrand F, Fontaine T, Janbon G. Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Mol Microbiol. 2007;64:771–81.

    CAS  PubMed  Google Scholar 

  49. Wang ZA, Griffith CL, Skowyra ML, Salinas N, Williams M, Maier EJ, et al. Cryptococcus neoformans dual GDP-mannose transporters and their role in biology and virulence. Eukaryot Cell. 2014;13:832–42.

    PubMed  PubMed Central  Google Scholar 

  50. • Li LX, Rautengarten C, Heazlewood JL, Doering TL. Xylose donor transport is critical for fungal virulence. PLOS Pathog. 2018; 14(1):e1006765. One of two papers by the same group of authors identifying proteins involved in nucleotide sugar transport during GXM synthesis.

    PubMed  PubMed Central  Google Scholar 

  51. Li LX, Ashikov A, Liu H, Griffith CL, Bakker H, Doering TL. Cryptococcus neoformans UGT1 encodes a UDP-Galactose/UDP-GalNAc transporter. Glycobiology. 2016;27:87–98.

    PubMed  PubMed Central  Google Scholar 

  52. Li LX, Rautengarten C, Heazlewood JL, Doering TL. UDP-glucuronic acid transport is required for virulence of Cryptococcus neoformans. mBio. 2018;9:e02319–17.

    PubMed  PubMed Central  Google Scholar 

  53. Klutts JS, Doering TL. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides. J Biol Chem. 2008;283:14327–14,334.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moyrand F, Chang YC, Himmelreich U, Kwon-Chung KJ, Janbon G. Cas3p belongs to a seven-member family of capsule structure designer proteins. Eukaryot Cell. 2004;3:1513–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoneda A, Doering TL. Regulation of Cryptococcus neoformans capsule size is mediated at the polymer level. Eukaryot Cell. 2008;7:546–9.

    CAS  PubMed  Google Scholar 

  56. Frases S, Pontes B, Nimrichter L, Viana NB, Rodrigues ML, Casadevall A. Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules. Proc Natl Acad Sci U S A. 2009;106:1228–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Reese AJ, Doering TL. Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol. 2003;50:1401–9.

    CAS  PubMed  Google Scholar 

  58. Nimrichter L, Frases S, Cinelli LP, Viana NB, Nakouzi A, Travassos LR, et al. Self-aggregation of Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent cations. Eukaryot Cell. 2007;6:1400–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Trevijano-Contador N, Rossi SA, Alves E, Landín-Ferreiroa S, Zaragoza O. Capsule enlargement in Cryptococcus neoformans is dependent on mitochondrial activity. Front Microbiol. 2017;8:1423.

    PubMed  PubMed Central  Google Scholar 

  60. Yoneda A, Doering TL. A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol Biol Cell. 2006;17:5131–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Panepinto J, Komperda K, Frases S, Park Y-D, Djordjevic JT, Casadevall A, et al. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol. 2009;71:1165–76.

    CAS  PubMed  Google Scholar 

  62. TerBush DR, Novick P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol. 1995;130:299–312.

    CAS  PubMed  Google Scholar 

  63. Guo W, Roth D, Walch-Solimena C, Novick P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 1999;18:1071–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brown JCS, Madhani HD. Approaching the functional annotation of fungal virulence factors using cross-species genetic interaction profiling. PLoS Genet. 2012;8:e1003168.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kmetzsch L, Joffe LS, Staats CC, de Oliveira DL, Fonseca FL, Cordero RJB, et al. Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence. Mol Microbiol. 2011;81:206–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell. 2008;7:58–67.

    CAS  PubMed  Google Scholar 

  67. Latgé JP. 30 years of battling the cell wall. Med Mycol. 2016;55:4–9.

    PubMed  Google Scholar 

  68. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460:1117.

    CAS  PubMed  Google Scholar 

  69. Bayry J, Beaussart A, Dufrêne YF, Sharma M, Bansal K, Kniemeyer O, et al. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect Immun. 2014;82:3141–53.

    PubMed  PubMed Central  Google Scholar 

  70. Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol. 2006;176:3717–24.

    CAS  PubMed  Google Scholar 

  71. Hohl TM, Van Epps HL, Rivera A, Morgan LA, Chen PL, Feldmesser M, et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog. 2005;1:e30.

    PubMed  PubMed Central  Google Scholar 

  72. Brown GD, Gordon S. A new receptor for β-glucans. Nature. 2001;413:36–7.

    CAS  PubMed  Google Scholar 

  73. • Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, et al. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. 2011;7:e1002372. Foundational paper on GAG biology.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol. 2007;9:1588–600.

    CAS  PubMed  Google Scholar 

  75. Miceli MH, Grazziutti ML, Woods G, Zhao W, Kocoglu MH, Barlogie B, et al. Strong correlation between serum Aspergillus galactomannan index and outcome of aspergillosis in patients with hematological cancer: Clinical and Research Implications. Clin Infect Dis. 2008;46:1412–22.

    PubMed  Google Scholar 

  76. Zhou W, Li H, Zhang Y, Huang M, He Q, Li P, et al. Diagnostic value of galactomannan antigen test in serum and bronchoalveolar lavage fluid samples from patients with nonneutropenic invasive pulmonary aspergillosis. J Clin Microbiol. 2017;55:2153–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bozza S, Clavaud C, Giovannini G, Fontaine T, Beauvais A, Sarfati J, et al. Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J Immunol. 2009:jimmunol.0900961.

  78. Gresnigt MS, Bozza S, Becker KL, Joosten LAB, Abdollahi-Roodsaz S, van der Berg WB, et al. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist. PLoS Pathog. 2014;10:e1003936.

    PubMed  PubMed Central  Google Scholar 

  79. Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog. 2015;11:e1005187.

    PubMed  PubMed Central  Google Scholar 

  80. Bamford NC, Snarr BD, Gravelat FN, Little DJ, Lee MJ, Zacharias CA, et al. Sph3 Is a glycoside hydrolase required for the biosynthesis of galactosaminogalactan in Aspergillus fumigatus. J Biol Chem. 2015;290:27438–27,450.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Briard B, Muszkieta L, Latgé J-P, Fontaine T. Galactosaminogalactan of Aspergillus fumigatus, a bioactive fungal polymer. Mycologia. 2016;108:572–80.

    CAS  PubMed  Google Scholar 

  82. • Lee MJ, Geller AM, Bamford NC, Liu H, Gravelat FN, Snarr BD, et al. Deacetylation of fungal exopolysaccharide mediates adhesion and biofilm formation. mBio. 2016;7(2):e00252. Demonstrates biological differences between acetylated and deacetylated GAG.

  83. Lee MJ, Gravelat FN, Cerone RP, Baptista SD, Campoli PV, Choe S-I, et al. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J Biol Chem. 2014;289:1243–56.

    CAS  PubMed  Google Scholar 

  84. Bamford NC, Le Mauff F, Subramanian AS, Yip P, Millán C, Zhang Y, et al. Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1,4-galactosaminidase that disrupts microbialbiofilms. J Biol Chem. 2019.

  85. Robertson EJ, Najjuka G, Rolfes MA, Akampurira A, Jain N, Anantharanjit J, et al. Cryptococcus neoformans ex vivo capsule size is associated with intracranial pressure and host immune response in HIV-associated cryptococcal meningitis. J Infect Dis. 2014;209:74–82.

    CAS  PubMed  Google Scholar 

  86. Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, et al. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53:1019–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Graybill JR, Sobel J, Saag M, van der Horst C, Powderly W, Cloud G, et al. Diagnosis and management of increased intracranial pressure in patients with AIDS and cryptococcal meningitis. Clin Infect Dis. 2000;30:47–54.

    CAS  PubMed  Google Scholar 

  88. Grinsell M, Weinhold LC, Cutler JE, Han Y, Kozel TR. In vivo clearance of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans: a critical role for tissue macrophages. J Infect Dis. 2001;184:479–87.

    CAS  PubMed  Google Scholar 

  89. Goldman DL, Lee SC, Casadevall A. Tissue localization of Cryptococcus neoformans glucuronoxylomannan in the presence and absence of specific antibody. Infect Immun. 1995;63:3448–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kappe R, Müller J. Rapid clearance of Candida albicans mannan antigens by liver and spleen in contrast to prolonged circulation of Cryptococcus neoformans antigens. J Clin Microbiol. 1991;29:1665–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Muchmore HG, Scott EN, Felton FG, Fromtling RA. Cryptococcal capsular polysaccharide clearance in nonimmune mice. Mycopathologia. 1982;78:41–5.

    CAS  PubMed  Google Scholar 

  92. Lendvai N, Casadevall A, Liang Z, Goldman DL, Mukherjee J, Zuckier L. Effect of immune mechanisms on the pharmacokinetics and organ distribution of cryptococcal polysaccharide. J Infect Dis. 1998;177:1647–59.

    CAS  PubMed  Google Scholar 

  93. Vecchiarelli A, Pericolini E, Gabrielli E, Kenno S, Perito S, Cenci E, et al. Elucidating the immunological function of the Cryptococcus neoformans capsule. Future Microbiol. 2013;8:1107–16.

    CAS  PubMed  Google Scholar 

  94. Retini C, Kozel TR, Pietrella D, Monari C, Bistoni F, Vecchiarelli A. Interdependency of Interleukin-10 and Interleukin-12 in regulation of T cell differentiation and effector function of monocytes in response to stimulation with Cryptococcus neoformans. Infect Immun. 2001;69:6064–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Vecchiarelli A, Retini C, Monari C, Tascini C, Bistoni F, Kozel TR. Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect Immun. 1996;64:2846–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wiesner DL, Smith KD, Kotov DI, Nielsen JN, Bohjanen PR, Nielsen K. Regulatory T cell induction and retention in the lungs drives suppression of detrimental type 2 Th cells during pulmonary cryptococcal infection. J Immunol. 2016;196:365–74.

    CAS  PubMed  Google Scholar 

  97. Monari C, Bevilacqua S, Piccioni M, Pericolini E, Perito S, Calvitti M, et al. A microbial polysaccharide reduces the severity of rheumatoid arthritis by influencing Th17 differentiation and proinflammatory cytokines production. J Immunol. 2009;183:191–200.

    CAS  PubMed  Google Scholar 

  98. Chang ZL, Netski D, Thorkildson P, Kozel TR. Binding and internalization of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans, by murine peritoneal macrophages. Infect Immun. 2006;74:144–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dong ZM, Murphy JW. Cryptococcal polysaccharides induce L-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J Clin Invest. 1996;97:689–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Retini C, Vecchiarelli A, Monari C, Bistoni F, Kozel TR. Encapsulation of <em>Cryptococcus neoformans</em> with glucuronoxylomannan inhibits the antigen-presenting capacity of monocytes. Infect Immun. 1998;66:664–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hernandez Y, Arora S, Erb-Downward JR, McDonald RA, Toews GB, Huffnagle GB. Distinct roles for IL-4 and IL-10 in regulating T2 immunity during allergic bronchopulmonary mycosis. J Immunol. 2005;174:1027–36.

    CAS  PubMed  Google Scholar 

  102. Murdock BJ, Teitz-Tennenbaum S, Chen G-H, Dils AJ, Malachowski AN, Curtis JL, et al. Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection. J Immunol. 2014.

  103. Monari C, Pericolini E, Bistoni F, Casadevall A, Kozel TR, Vecchiarelli A. Cryptococcus neoformans capsular glucuronoxylomannan induces expression of Fas ligand in macrophages. J Immunol. 2005;174:3461–8.

    CAS  PubMed  Google Scholar 

  104. Goldman DL, Khine H, Abadi J, Lindenberg DJ, Pirofski LA, Niang R, et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics. 2001;107:E66.

    CAS  PubMed  Google Scholar 

  105. Robinet P, Baychelier F, Fontaine T, Picard C, Debré P, Vieillard V, et al. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. J Immunol. 2014;192:5332–42.

    CAS  PubMed  Google Scholar 

  106. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114:2619–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Seidler MJ, Salvenmoser S, Müller F-MC. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother. 2008;52:4130–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rajendran R, Williams C, Lappin DF, Millington O, Martins M, Ramage G. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell. 2013;12:420–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Beauvais A, Latgé J-P. Aspergillus biofilm in vitro and in vivo. Microbiol Spectr. 2015;3.

  110. • Aslanyan L, Sanchez DA, Valdebenito S, Eugenin EA, Ramos RL, Martinez LR. The crucial role of biofilms in Cryptococcus neoformans survival within macrophages and colonization of the central nervous system. J Fungi (Basel, Switzerland). 2017;3:10. Images of cryptococcal lesions in brains of infected mice.

    Google Scholar 

  111. Müller F-MC, Seidler M, Beauvais A. Aspergillus fumigatus biofilms in the clinical setting. Med Mycol. 2011;49:S96–S100.

    PubMed  Google Scholar 

  112. Loussert C, Schmitt C, Prevost M-C, Balloy V, Fadel E, Philippe B, et al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol. 2010;12:405–10.

    CAS  PubMed  Google Scholar 

  113. Camacho E, Casadevall A. Cryptococcal traits mediating adherence to biotic and abiotic surfaces. J Fungi (Basel, Switzerland). 2018;4:88.

    CAS  Google Scholar 

  114. Kaur S, Singh S. Biofilm formation by Aspergillus fumigatus. Med Mycol. 2013;52:2–9.

    Google Scholar 

  115. Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev. 2011;20:156–74.

    CAS  PubMed  Google Scholar 

  116. Walsh TJ, Schlegel R, Moody MM, Costerton JW, Salcman M. Ventriculoatrial shunt infection due to Cryptococcus neoformans: an ultrastructural and quantitative microbiological study. Neurosurgery. 1986;18:376–82.

    Google Scholar 

  117. Banerjee U, Gupta K, Venugopal P. A case of prosthetic valve endocarditis caused by Cryptococcus neoformans var. neoformans. Med Mycol. 1997;35:139–41.

    CAS  Google Scholar 

  118. Bach MC, Tally PW, Godofsky EW. Use of cerebrospinal fluid shunts in patients having acquired immunodeficiency syndrome with cryptococcal meningitis and uncontrollable intracranial hypertension. Neurosurgery. 1997;41:1280–3.

    CAS  PubMed  Google Scholar 

  119. Martinez LR, Casadevall A. Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect Immun. 2005;73:6350–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Martinez LR, Casadevall A. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol. 2007;73:4592–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang L, Zhai B, Lin X. The link between morphotype transition and virulence in Cryptococcus neoformans. PLoS Pathog. 2012;8:–e1002765.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Homer CM, Summers DK, Goranov AI, Clarke SC, Wiesner DL, Diedrich JK, et al. Intracellular action of a secreted peptide required for fungal virulence. Cell Host Microbe. 2016;19:849–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee H, Chang YC, Nardone G, Kwon-Chung KJ. TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol. 2007;64:591–601.

    CAS  PubMed  Google Scholar 

  124. Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15:259.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Boase S, Jervis-Bardy J, Cleland E, Pant H, Tan L, Wormald P-J. Bacterial-induced epithelial damage promotes fungal biofilm formation in a sheep model of sinusitis. Int Forum Allergy Rhinol. 2013;3:341–8.

    PubMed  Google Scholar 

  126. Dambuza IM, Drake T, Chapuis A, Zhou X, Correia J, Taylor-Smith L, et al. The Cryptococcus neoformans titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathog. 2018;14:–e1006978.

    PubMed  PubMed Central  Google Scholar 

  127. Ikeda R, Saito F, Matsuo M, Kurokawa K, Sekimizu K, Yamaguchi M, et al. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans. J Bacteriol. 2007;189:4815–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One. 2012;7:e36313.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Williams C, Ranjendran R, Ramage G. Pathogenesis of fungal infections in cystic fibrosis. Curr Fungal Infect Rep. 2016;10:163–9.

    PubMed  PubMed Central  Google Scholar 

  130. Kraemer R, Deloséa N, Ballinari P, Gallati S, Crameri R. Effect of allergic bronchopulmonary aspergillosis on lung function in children with cystic fibrosis. Am J Respir Crit Care Med. 2006;174:1211–20.

    PubMed  Google Scholar 

  131. Reece E, Segurado R, Jackson A, McClean S, Renwick J, Greally P. Co-colonization with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: an Irish registry analysis. BMC Pulm Med. 2017;17:70.

    PubMed  PubMed Central  Google Scholar 

  132. Coburn B, Wang PW, Diaz Caballero J, Clark ST, Brahma V, Donaldson S, et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep. 2015;5:10241–10,241.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Knutsen AP, Slavin RG. Allergic bronchopulmonary aspergillosis in asthma and cystic fibrosis. Clin Dev Immunol. 2011;2011:843763.

    PubMed  PubMed Central  Google Scholar 

  134. Janahi IA, Rehman A, Al-Naimi AR. Allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Ann Thoracic Med. 2017;12:74–82.

    CAS  Google Scholar 

  135. Malhotra S, Hayes D, Wozniak DJ. Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev. 2019;32:e00138–18.

    PubMed  PubMed Central  Google Scholar 

  136. Sass G, Ansari SR, Dietl A-M, Déziel E, Haas H, Stevens DA. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLoS One. 2019;14:e0216085.

    PubMed  PubMed Central  Google Scholar 

  137. Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, et al. Aspergillus-Pseudomonas interaction, relevant to competition in airways. Med Mycol. 2019;57:S228–32.

    PubMed  Google Scholar 

  138. Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2018;200:e00345–17.

    CAS  PubMed  Google Scholar 

  139. Briard B, Bomme P, Lechner BE, Mislin GLA, Lair V, Prévost M-C, et al. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep. 2015;5:8220.

    PubMed  PubMed Central  Google Scholar 

  140. Snarr BD, Baker P, Bamford NC, Sato Y, Liu H, Lehoux M, et al. Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proc Natl Acad Sci. 2017;114:7124–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Colombo AL, Padovan ACB, Chaves GM. Current knowledge of Trichosporon spp. and trichosporonosis. Clin Microbiol Rev. 2011;24:682–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. • Rocha JDB, Nascimento MTC, Decote-Ricardo D, Côrte-Real S, Morrot A, Heise N, et al. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Sci Rep. 2015;5:8008. A recent example demonstrating immunomodulatory properties of GXM.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by research grant R01AI130248 from the National Institutes of Health to J.C.S.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica C. S. Brown.

Ethics declarations

Conflict of Interest

Dr. Brown reports grants from National Institutes of Health, during the conduct of the study. Ms. Chung has nothing to disclose.

Human and Animal rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mycology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, K.Y., Brown, J.C.S. Biology and Function of Exo-Polysaccharides from Human Fungal Pathogens. Curr Clin Micro Rpt 7, 1–11 (2020). https://doi.org/10.1007/s40588-020-00137-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-020-00137-5

Keywords

Navigation