Skip to main content
Log in

Normal form and dynamics of the Kirchhoff equation

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

We summarize some recent results on the Cauchy problem for the Kirchhoff equation

$$\begin{aligned} \partial _{tt} u - \Delta u \Bigg ( 1 + \int _{{{\mathbb {T}}}^d} |\nabla u|^2 \Bigg ) = 0 \end{aligned}$$

on the d-dimensional torus \({{\mathbb {T}}}^d\), with initial data u(0, x), \(\partial _t u(0,x)\) of size \(\varepsilon \) in Sobolev class. While the standard local theory gives an existence time of order \(\varepsilon ^{-2}\), a quasilinear normal form allows to give a lower bound on the existence time of the order of \(\varepsilon ^{-4}\) for all initial data, improved to \(\varepsilon ^{-6}\) for initial data satisfying a suitable nonresonance condition. We also use such a normal form in an ongoing work with F. Giuliani and M. Guardia to prove existence of chaotic-like motions for the Kirchhoff equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study, which is entirely theoretical.

References

  1. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldi, P., Giuliani, F., Guardia, M., Haus, E.: Effective chaos for the Kirchhoff equation on tori (work in progress)

  3. Baldi, P., Haus, E.: On the existence time for the Kirchhoff equation with periodic boundary conditions. Nonlinearity 33(1), 196–223 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baldi, P., Haus, E.: On the normal form of the Kirchhoff equation. J. Dyn. Differ. Equ. 33, 1203–1230 (2021). (Special issue in memory of Walter Craig)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldi, P., Haus, E.: Longer lifespan for many solutions of the Kirchhoff equation. SIAM J. Math. Anal. 54(1), 306–342 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bambusi, D., Grébert, B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135, 507–567 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bambusi, D., Delort, J.-M., Grébert, B., Szeftel, J.: Almost global existence for Hamiltonian semilinear Klein–Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math. 60(11), 1665–1690 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernier, J., Faou, E., Grébert, B.: Rational normal forms and stability of small solutions to nonlinear Schrödinger equations. Ann. PDE 6(2), art. 14 (2020)

    Article  MATH  Google Scholar 

  9. Bernier, J., Grébert, B.: Long time dynamics for generalized Korteweg–de Vries and Benjamin–Ono equations. Arch. Ration. Mech. Anal. 241(3), 1139–1241 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernstein, S.N.: Sur une classe d’équations fonctionnelles aux dérivées partielles. Izv. Akad. Nauk SSSR Ser. Mat. 4, 17–26 (1940)

    MATH  Google Scholar 

  11. Berti, M., Delort, J.-M.: Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle. Lecture Notes Unione Mat Ital, vol. 24. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  12. Berti, M., Feola, R., Pusateri, F.: Birkhoff normal form and long time existence for periodic gravity water waves. Commun. Pure Appl. Math. (2022). https://doi.org/10.1002/cpa.22041

    Article  MATH  Google Scholar 

  13. Bourgain, J.: On diffusion in high-dimensional Hamiltonian systems and PDE. J. Anal. Math. 80, 1–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181, 39–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Craig, W., Sulem, C.: Mapping properties of normal forms transformations for water waves. Boll. Unione Mat. Ital. 9, 289–318 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delort, J.-M.: Long-time Sobolev stability for small solutions of quasi-linear Klein–Gordon equations on the circle. Trans. Am. Math. Soc. 361(8), 4299–4365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Delort, J.-M.: A quasi-linear Birkhoff normal forms method. . Application to the quasi-linear Klein-Gordon equation on \({\mathbb{S}}^1\). Astérisque 341, 25 (2012)

    Google Scholar 

  18. Dickey, R.W.: Infinite systems of nonlinear oscillation equations related to the string. Proc. Am. Math. Soc. 23, 459–468 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feola, R., Iandoli, F.: Long time existence for fully nonlinear NLS with small Cauchy data on the circle. Ann. Sc. Norm. XXII Super. Pisa Cl. Sci. 1, 109–182 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Ghisi, M., Gobbino, M.: Global solutions to the Kirchhoff equation with spectral gap data in the energy space. arXiv:2208.05400

  21. Giuliani, F., Guardia, M., Martin, P., Pasquali, S.: Chaotic-like transfers of energy in Hamiltonian PDEs. Commun. Math. Phys. 384, 1227–1290 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grébert, B., Thomann, L.: Resonant dynamics for the quintic nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 455–477 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guardia, M., Hani, Z., Haus, E., Maspero, A., Procesi, M.: Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite gap tori for the 2D cubic NLS equation. J. Eur. Math. Soc. (2022). https://doi.org/10.4171/JEMS/1200

    Article  MATH  Google Scholar 

  24. Guardia, M., Haus, E., Procesi, M.: Growth of Sobolev norms for the analytic NLS on \(\mathbb{T}^2\). Adv. Math. 301, 615–692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guardia, M., Kaloshin, V.: Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 71–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Haus, E., Procesi, M.: KAM for beating solutions of the quintic NLS. Commun. Math. Phys. 354, 1101–1132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haus, E., Thomann, L.: Dynamics on resonant clusters for the quintic nonlinear Schrödinger equation. Dyn. Partial Differ. Equ. 10, 157–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ifrim, M., Tataru, D.: The lifespan of small data solutions in two dimensional capillary water waves. Arch. Ration. Mech. Anal. 225(3), 1279–1346 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kirchhoff, G.: Vorlesungen über mathematische Physik: Mechanik, vol. 29. Teubner, Leipzig (1876)

    MATH  Google Scholar 

  30. Klainerman, S., Majda, A.: Formation of singularities for wave equations including the nonlinear vibrating string. Commun. Pure Appl. Math. 33, 241–263 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. (2) 143(1), 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Claudio Bonanno and the DinAmici group for the participation to the DAI days. This work has been supported by PRIN 2020XB3EFL “Hamiltonian and dispersive PDEs”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Haus.

Ethics declarations

Conflicts of interest

We declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, P., Haus, E. Normal form and dynamics of the Kirchhoff equation. Boll Unione Mat Ital 16, 337–349 (2023). https://doi.org/10.1007/s40574-022-00344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-022-00344-6

Navigation