Skip to main content
Log in

Ulam’s stability of multi-point implicit boundary value problems with non-instantaneous impulses

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

In this paper, the existence results of the solutions and stability are focused for impulsive implicit sequential fractional differential equation with multi-points boundary conditions. In view of the definitions of Caputo fractional order, the existence, uniqueness, and at least one solution of the aforesaid equation are presented. Beside this, Ulam’s type stabilities are discussed. To support our main results, we present some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, M., Zada, A., Alzabut, J.: Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer–Hadamard type. Demonstr. Math. 52, 283–295 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Ahmad, M., Zada, A., Alzabut, J.: Existence, uniqueness and Hyres–Ulam stability of a coupled implicit switched nonlinear fractional differential system with \(p\)-Laplacian. Adv. Differ. Equ. 2019, 436 (2019)

    Google Scholar 

  3. Anastassiou, G.A.: On right fractional calculus. Chaos Soliton Fractal 42(1), 365–376 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2010)

    MATH  Google Scholar 

  5. Diaz, J.B., Margolis, B.: A fixed point theorem of alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    MathSciNet  MATH  Google Scholar 

  7. Jung, C.F.K.: On generalized complete metric spaces. Bull. Amer. Math. Soc. 75, 113–116 (1969)

    MathSciNet  MATH  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, Nort-Holand Mathematics Studies, vol. 204. B. V. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  9. Kosmatov, N.: Initial value problems of fractional order with fractional impulsive conditions. Results Math. 63, 1289–1310 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Kubica, A., Rybka, P., Ryszewska, K.: Weak solutions of fractional differential equations in noncylindrical domains. Nonlinear Anal. Real World Appl. 36, 154–182 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Li, T., Zada, A.: Connections between Hyers–Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv. Differ. Equ. 153, 2070–2075 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  13. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Metzler, R., Joseph, K.: Boundary value problems for fractional diffusion equations. Phys. Stat. Mech. Appl. 278(1), 107–125 (2000)

    MathSciNet  Google Scholar 

  15. Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41, 9–12 (2010)

    MATH  Google Scholar 

  16. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering, vol. 84. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  18. Rassias, T.M.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 14, 297–300 (1978)

    MathSciNet  MATH  Google Scholar 

  19. Riaz, U., Zada, A., Ali, Z., et al.: Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives. Math. Probl. Eng. 2019, Article ID 5093572 (2019)

  20. Riaz, U., Zada, A., Ali, Z., Cui, Y., Xu, J.: Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives. Adv. Differ. Equ. 2019(226), 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Rihan, A.F.: Numerical modeling of fractional-order biological systems. Abstr. Appl. Anal. 2013, 11 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Rizwan, R., Zada, A.: Nonlinear impulsive Langevin equation with mixed derivatives. Math. Methods Appl. Sci. 43(1), 427–442 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Rus, I.A.: Ulam stability of ordinary differential equations in a Banach space. Carpathian J. Math. 26, 103–107 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Sabatier, J., Agarwal, O.P., Machado, T.A.J.: Advances in Fractional Calculus. Springer, Dordrecht (2007)

    Google Scholar 

  25. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Higher Education Press, Heidelberg (2010)

    MATH  Google Scholar 

  26. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1968)

    MATH  Google Scholar 

  27. Vintagre, B.M., Podlbyni, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  Google Scholar 

  28. Wang, J., Zada, A., Waheed, H.: Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem. Math. Method. Appl. Sci. 42(18), 6706–6732 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Wu, G.C., Baleanu, D., Deng, Z.G., Zeng, S.D.: Lattice fractional diffusion equation in terms of a Riesz–Caputo difference. Phys. A 438, 335–339 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Zada, A., Ali, S., Li, Y.: Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 317, 1–26 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Zada, A., Ali, W., Farina, S.: Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Methods Appl. Sci. 40, 5502–5514 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Zada, A., Fatma, S., Ali, Z., Xu, J., Cui, Y.: Stability results for a coupled system of impulsive fractional differential equations. Mathematics 7(10), 927 (2019)

    Google Scholar 

  33. Zada, A., Khan, F., Riaz, U., Li, T.: Hyers–Ulam stability of linear summation equations. Punjab Univ. J. Math. 49(1), 19–24 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Zada, A., Riaz, U., Khan, F.: Hyers–Ulam stability of impulsive integral equations. Boll. Unione Mat. Ital. 12(3), 453–467 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Zada, A., Shah, S.O., Shah, R.: Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problem. Appl. Math. Comput. 271, 512–518 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Zada, A., Waheed, H., Alzabut, J., Wang, Xiaoming: Existence and stability of impulsive coupled system of fractional integrodifferential equations. Demonstr. Math. 52, 296–335 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Zeng, S.D., Baleanu, D., Bai, Y.R., Wu, G.C.: Fractional differential equations of Caputo–Katugampola type and numerical solutions. Appl. Math. Comput. 315, 549–554 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Zeng, F.H., Li, C.P., Liu, F.E., Turner, I.: The use of finite differences/element approaches for solving the time-fractional subdiffusion equation. SIAM. Sci. Comput. 35, 2976–3000 (2013)

    MathSciNet  Google Scholar 

  39. Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

All authors have read and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Zada.

Ethics declarations

Conflicts of interests

Authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zada, A., Ali, N. & Riaz, U. Ulam’s stability of multi-point implicit boundary value problems with non-instantaneous impulses. Boll Unione Mat Ital 13, 305–328 (2020). https://doi.org/10.1007/s40574-020-00219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-020-00219-8

Keywords

Mathematics Subject Classification

Navigation