Skip to main content

Advertisement

Log in

Fine-Scale Air Pollution Models for Epidemiologic Research: Insights From Approaches Developed in the Multi-ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

  • Early Life Environmental Health (H Volk and J Buckley, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Epidemiological studies of short- and long-term health impacts of ambient air pollutants require accurate exposure estimates. We describe the evolution in exposure assessment and assignment in air pollution epidemiology, with a focus on spatiotemporal techniques first developed to meet the needs of the Multi-ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Initially designed to capture the substantial variation in pollutant levels and potential health impacts that can occur over small spatial and temporal scales in metropolitan areas, these methods have now matured to permit fine-scale exposure characterization across the contiguous USA and can be used for understanding long- and short-term health effects of exposure across the lifespan. For context, we highlight how the MESA Air models compare to other available exposure models.

Recent Findings

Newer model-based exposure assessment techniques provide predictions of pollutant concentrations with fine spatial and temporal resolution. These validated models can predict concentrations of several pollutants, including particulate matter less than 2.5 μm in diameter (PM2.5), oxides of nitrogen, and ozone, at specific locations (such as at residential addresses) over short time intervals (such as 2 weeks) across the contiguous USA between 1980 and the present. Advances in statistical methods, incorporation of supplemental pollutant monitoring campaigns, improved geographic information systems, and integration of more complete satellite and chemical transport model outputs have contributed to the increasing validity and refined spatiotemporal spans of available models.

Summary

Modern models for predicting levels of outdoor concentrations of air pollutants can explain a substantial amount of the spatiotemporal variation in observations and are being used to provide critical insights into effects of air pollutants on the prevalence, incidence, progression, and prognosis of diseases across the lifespan. Additional enhancements in model inputs and model design, such as incorporation of better traffic data, novel monitoring platforms, and deployment of machine learning techniques, will allow even further improvements in the performance of pollutant prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brook RD, Rajagopalan S, Pope CAI, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. https://doi.org/10.1161/CIR.0b013e3181dbece1.

    Article  CAS  PubMed  Google Scholar 

  2. Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, et al. Air pollution and mortality in the Medicare population. N Engl J Med. 2017;376(26):2513–22. https://doi.org/10.1056/NEJMoa1702747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014;383(9919):785–95. https://doi.org/10.1016/S0140-6736(13)62158-3.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18. https://doi.org/10.1016/S0140-6736(17)30505-6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993;329(24):1753–9. https://doi.org/10.1056/nejm199312093292401.

    Article  CAS  PubMed  Google Scholar 

  6. Pope CA 3rd, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med. 1995;151(3 Pt 1):669–74. https://doi.org/10.1164/ajrccm/151.3_Pt_1.669.

    Article  PubMed  Google Scholar 

  7. •• Hoek G. Methods for assessing long-term exposures to outdoor air pollutants. Curr Environ Health Rep. 2017;4(4):450–62. https://doi.org/10.1007/s40572-017-0169-5This paper reviews common methods used in the assessment of ambient air pollutants and discusses recent developments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berrocal VJ, Guan Y, Muyskens A, Wang H, Reich BJ, Mulholland JA, et al. A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5 concentration. Atmos Environ. 2020;222:117130. https://doi.org/10.1016/j.atmosenv.2019.117130.

    Article  CAS  Google Scholar 

  9. Sorek-Hamer M, Just AC, Kloog I. Satellite remote sensing in epidemiological studies. Curr Opin Pediatr. 2016;28(2):228–34. https://doi.org/10.1097/mop.0000000000000326.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kaufman JD, Adar SD, Allen RW, Barr RG, Budoff MJ, Burke GL, et al. Prospective study of particulate air pollution exposures, subclinical atherosclerosis, and clinical cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Am J Epidemiol. 2012;176(9):825–37. https://doi.org/10.1093/aje/kws169.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Szpiro AA, Paciorek CJ. Measurement error in two-stage analyses, with application to air pollution epidemiology. Environmetrics. 2013;24(8):501–17. https://doi.org/10.1002/env.2233.

    Article  PubMed  Google Scholar 

  12. Vlaanderen J, Portengen L, Chadeau-Hyam M, Szpiro A, Gehring U, Brunekreef B, et al. Error in air pollution exposure model determinants and bias in health estimates. J Expos Sci Environ Epidemiol. 2019;29(2):258–66. https://doi.org/10.1038/s41370-018-0045-x.

    Article  CAS  Google Scholar 

  13. Butland BK, Samoli E, Atkinson RW, Barratt B, Katsouyanni K. Measurement error in a multi-level analysis of air pollution and health: a simulation study. Environ Health. 2019;18(1):13. https://doi.org/10.1186/s12940-018-0432-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eeftens M, Tsai M-Y, Ampe C, Anwander B, Beelen R, Bellander T, et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PM coarse concentrations between and within 20 European study areas and the relationship with NO2 – Results of the ESCAPE project. Atmos Environ. 2012;62:303–17. https://doi.org/10.1016/j.atmosenv.2012.08.038.

    Article  CAS  Google Scholar 

  15. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;356(5):447–58. https://doi.org/10.1056/NEJMoa054409.

    Article  CAS  PubMed  Google Scholar 

  16. Brunekreef B, Hoffmann B. Air pollution and heart disease. Lancet. 2016;388(10045):640–2. https://doi.org/10.1016/S0140-6736(16)30375-0.

    Article  PubMed  Google Scholar 

  17. United States Environmental Protection Agency. SLAMS/NAMS/PAMS network review guidance: regulatory requirements and other data needs. Research Triangle Park, DC: US EPA; 1998.

    Google Scholar 

  18. Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ. 2008;42:7561–78.

    Article  CAS  Google Scholar 

  19. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, et al. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol. 2005;15(2):185–204. https://doi.org/10.1038/sj.jea.7500388.

    Article  CAS  PubMed  Google Scholar 

  20. Streets DG, Canty T, Carmichael GR, de Foy B, Dickerson RR, Duncan BN, et al. Emissions estimation from satellite retrievals: a review of current capability. Atmos Environ. 2013;77:1011–42. https://doi.org/10.1016/j.atmosenv.2013.05.051.

    Article  CAS  Google Scholar 

  21. van Donkelaar A, Martin RV, Brauer M, Boys BL. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect. 2015;123(2):135–43. https://doi.org/10.1289/ehp.1408646.

    Article  PubMed  Google Scholar 

  22. Bey I, Jacob DJ, Yantosca RM, Logan JA, Field BD, Fiore AM, et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J Geophys Res-Atmos. 2001;106(D19):23073–95. https://doi.org/10.1029/2001jd000807.

    Article  CAS  Google Scholar 

  23. Beevers SD, Kitwiroon N, Williams ML, Kelly FJ, Ross Anderson H, Carslaw DC. Air pollution dispersion models for human exposure predictions in London. J Expo Sci Environ Epidemiol. 2013;23(6):647–53. https://doi.org/10.1038/jes.2013.6.

    Article  CAS  PubMed  Google Scholar 

  24. Hart JE, Yanosky JD, Puett RC, Ryan L, Dockery DW, Smith TJ, et al. Spatial modeling of PM10 and NO2 in the continental United States, 1985-2000. Environ Health Perspect. 2009;117(11):1690–6. https://doi.org/10.1289/ehp.0900840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J. Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ Sci Technol. 2016;50(9):4712–21. https://doi.org/10.1021/acs.est.5b06121This paper illustrates a contemporary hybrid technique for estimating pollutant concentrations at a continental scale based on multiple approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang M, Sampson P, Bechle M, Marshall J, Vedal S, Kaufman J. National PM2. 5 and NO2 Spatiotemporal models integrating intensive monitoring data and satellite-derived land use regression in a universal kriging framework in the United States: 1999-2016. Ottawa: ISEE Conference Abstracts; 2018.

    Google Scholar 

  27. Wang M, Sampson PD, Hu J, Kleeman M, Keller JP, Olives C, et al. Combining land-use regression and chemical transport modeling in a spatiotemporal geostatistical model for ozone and PM2.5. Environ Sci Technol. 2016;50(10):5111–8. https://doi.org/10.1021/acs.est.5b06001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Di Q, Koutrakis P, Schwartz J. A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression. Atmos Environ. 2016;131:390–9. https://doi.org/10.1016/j.atmosenv.2016.02.002.

    Article  CAS  Google Scholar 

  29. Mercer LD, Szpiro AA, Sheppard L, Lindström J, Adar SD, Allen RW, et al. Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Atmospher Environ. 2011;45(26):4412–20. https://doi.org/10.1016/j.atmosenv.2011.05.043.

    Article  CAS  Google Scholar 

  30. •• Keller JP, Olives C, Kim SY, Sheppard L, Sampson PD, Szpiro AA, et al. A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the multi-ethnic study of atherosclerosis and air pollution. Environ Health Perspect. 2015;123(4):301–9. https://doi.org/10.1289/ehp.1408145This paper details the unified application of the MESA Air spatiotemporal approach to obtain residence-level concentrations for multiple pollutants in multiple cities.

    Article  PubMed  Google Scholar 

  31. • Lindstrom J, Szpiro AA, Sampson PD, Oron AP, Richards M, Larson TV, et al. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates. Environ Ecol Stat. 2014;21(3):411–33. https://doi.org/10.1007/s10651-013-0261-4This paper outlines the theoretical and validation framework for the MESA Air spatiotemporal model and includes an application using empirical data.

    Article  CAS  PubMed  Google Scholar 

  32. Keller JP, Peng RD. Error in estimating area-level air pollution exposures for epidemiology. Environmetrics. 2019;30(8):e2573. https://doi.org/10.1002/env.2573.

    Article  CAS  Google Scholar 

  33. Sampson PD, Szpiro AA, Sheppard L, Lindström J, Kaufman JD. Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data. Atmos Environ. 2011;45(36):6593–606.

    Article  CAS  Google Scholar 

  34. Federal Register. Revision to the near-road NO2: A rule by the Environmental protection Agency (Document Citation: 81 FR 96381). Washington, DC. 2016. https://www.federalregister.gov/documents/2016/12/30/2016-31645/revision-to-the-near-road-no2. .

  35. Cohen MA, Adar SD, Allen RW, Avol E, Curl CL, Gould T, et al. Approach to estimating participant pollutant exposures in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Environ Sci Technol. 2009;43(13):4687–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kim S-Y, Sheppard L, Bergen S, Szpiro AA, Sampson PD, Kaufman JD, et al. Prediction of fine particulate matter chemical components with a spatio-temporal model for the Multi-Ethnic Study of Atherosclerosis cohort. J Expos Sci Environ Epidemiol. 2016;26(5):520–8. https://doi.org/10.1038/jes.2016.29.

    Article  CAS  Google Scholar 

  37. Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL, et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet. 2016;388(10045):696–704. https://doi.org/10.1016/S0140-6736(16)00378-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansel NN, Paulin LM, Gassett AJ, Peng RD, Alexis N, Fan VS, et al. Design of the Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) AIR Study. BMJ Open Respir Res. 2017;4(1):e000186. https://doi.org/10.1136/bmjresp-2017-000186.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paulin LM, Gassett AJ, Alexis NE, Kirwa K, Kanner RE, Peters S, et al. Association of long-term ambient ozone exposure with respiratory morbidity in smokers. JAMA Intern Med. 2020;180(1):106–15. https://doi.org/10.1001/jamainternmed.2019.5498.

    Article  CAS  PubMed  Google Scholar 

  40. • Szpiro AA, Sampson PD, Sheppard L, Lumley T, Adar SD, Kaufman J. Predicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependencies. Environmetrics. 2009;21(6):606–31. https://doi.org/10.1002/env.1014This paper describes methodology for assigning individual estimates of air pollutant concentrations while accounting for complex spatiotemporal correlation structure and spatial misalignment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paciorek CJ, Yanosky JD, Puett RC, Laden F, Suh HH. Practical large-scale spatio-temporal modeling of particulate matter concentrations. Ann Appl Stat. 2009;3(1):370–97.

    Article  Google Scholar 

  42. Yanosky JD, Paciorek CJ, Suh HH. Predicting chronic fine and coarse particulate exposures using spatiotemporal models for the Northeastern and Midwestern United States. Environ Health Perspect. 2009;117(4):522–9. https://doi.org/10.1289/ehp.11692.

    Article  PubMed  Google Scholar 

  43. Hatzopoulou M, Valois MF, Levy I, Mihele C, Lu G, Bagg S, et al. Robustness of land-use regression models developed from mobile air pollutant measurements. Environ Sci Technol. 2017;51(7):3938–47. https://doi.org/10.1021/acs.est.7b00366.

    Article  CAS  PubMed  Google Scholar 

  44. Jones RR, Hoek G, Fisher JA, Hasheminassab S, Wang D, Ward MH, et al. Land use regression models for ultrafine particles, fine particles, and black carbon in Southern California. Sci Total Environ. 2020;699:134234. https://doi.org/10.1016/j.scitotenv.2019.134234.

    Article  CAS  PubMed  Google Scholar 

  45. Saha PK, Li HZ, Apte JS, Robinson AL, Presto AA. Urban ultrafine particle exposure assessment with land-use regression: influence of sampling strategy. Environ Sci Technol. 2019;53(13):7326–36. https://doi.org/10.1021/acs.est.9b02086.

    Article  CAS  PubMed  Google Scholar 

  46. Tessum MW, Larson T, Gould TR, Simpson CD, Yost MG, Vedal S. Mobile and fixed-site measurements to identify spatial distributions of traffic-related pollution sources in Los Angeles. Environ Sci Technol. 2018;52(5):2844–53. https://doi.org/10.1021/acs.est.7b04889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yanosky JD, Paciorek CJ, Laden F, Hart JE, Puett RC, Liao D, et al. Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors. Environ Health. 2014;13(1):63. https://doi.org/10.1186/1476-069X-13-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beckerman BS, Jerrett M, Serre M, Martin RV, Lee S-J, van Donkelaar A, et al. A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environ Sci Technol. 2013;47(13):7233–41. https://doi.org/10.1021/es400039u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Donkelaar A, Martin RV, Spurr RJ, Burnett RT. High-resolution satellite-derived PM2.5 from optimal estimation and geographically weighted regression over North America. Environ Sci Technol. 2015;49(17):10482–91. https://doi.org/10.1021/acs.est.5b02076.

    Article  CAS  PubMed  Google Scholar 

  50. Bechle MJ, Millet DB, Marshall JD. National spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, 2000–2010. Environ Sci Technol. 2015;49(20):12297–305. https://doi.org/10.1021/acs.est.5b02882.

    Article  CAS  PubMed  Google Scholar 

  51. Li T, Shen H, Yuan Q, Zhang X, Zhang L. Estimating Ground-Level PM2.5 by Fusing satellite and station observations: a geo-intelligent deep learning approach. Geophys Res Lett. 2017;44(23):11,985–1,93. https://doi.org/10.1002/2017gl075710.

    Article  CAS  Google Scholar 

  52. Di Q, Rowland S, Koutrakis P, Schwartz J. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States. J Air Waste Manage Assoc. 1995;67(1):39–52. https://doi.org/10.1080/10962247.2016.1200159.

    Article  CAS  Google Scholar 

  53. Chen H, Goldberg MS, Crouse DL, Burnett RT, Jerrett M, Villeneuve PJ, et al. Back-extrapolation of estimates of exposure from current land-use regression models. Atmos Environ. 2010;44(35):4346–54. https://doi.org/10.1016/j.atmosenv.2010.07.061.

    Article  CAS  Google Scholar 

  54. Wang R, Henderson SB, Sbihi H, Allen RW, Brauer M. Temporal stability of land use regression models for traffic-related air pollution. Atmos Environ. 2013;64:312–9. https://doi.org/10.1016/j.atmosenv.2012.09.056.

    Article  CAS  Google Scholar 

  55. Eeftens M, Beelen R, Fischer P, Brunekreef B, Meliefste K, Hoek G. Stability of measured and modelled spatial contrasts in NO<sub>2</sub> over time. Occup Environ Med. 2011;68(10):765. https://doi.org/10.1136/oem.2010.061135.

    Article  CAS  PubMed  Google Scholar 

  56. Cesaroni G, Porta D, Badaloni C, Stafoggia M, Eeftens M, Meliefste K, et al. Nitrogen dioxide levels estimated from land use regression models several years apart and association with mortality in a large cohort study. Environ Health. 2012;11(1):48. https://doi.org/10.1186/1476-069X-11-48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim S-Y, Olives C, Sheppard L, Sampson PD, Larson TV, Keller JP, et al. Historical prediction modeling approach for estimating long-term concentrations of PM<sub>2.5</sub> in Cohort Studies before the 1999 Implementation of widespread monitoring. Environ Health Perspect. 2017;125(1):38–46. https://doi.org/10.1289/EHP131.

    Article  PubMed  Google Scholar 

  58. Gulliver J, de Hoogh K, Hoek G, Vienneau D, Fecht D, Hansell A. Back-extrapolated and year-specific NO2 land use regression models for Great Britain - Do they yield different exposure assessment? Environ Int. 2016;92-93:202–9. https://doi.org/10.1016/j.envint.2016.03.037.

    Article  CAS  PubMed  Google Scholar 

  59. Knibbs LD, Coorey CP, Bechle MJ, Marshall JD, Hewson MG, Jalaludin B, et al. Long-term nitrogen dioxide exposure assessment using back-extrapolation of satellite-based land-use regression models for Australia. Environ Res. 2018;163:16–25. https://doi.org/10.1016/j.envres.2018.01.046.

    Article  CAS  PubMed  Google Scholar 

  60. Dominici F, Schwartz J, Di Q, Braun D, Choirat C, Zanobetti A. Assessing adverse health effects of long-term exposure to low levels of ambient air pollution: phase 1. Research Report 200. Boston, MA: Health Effects Institute; 2019.

  61. Hu J, Zhang H, Ying Q, Chen SH, Vandenberghe F, Kleeman MJ. Long-term particulate matter modeling for health effect studies in California – Part 1: Model performance on temporal and spatial variations. Atmos Chem Phys. 2015;15(6):3445–61. https://doi.org/10.5194/acp-15-3445-2015.

    Article  CAS  Google Scholar 

  62. Meng J, Li C, Martin RV, van Donkelaar A, Hystad P, Brauer M. Estimated long-term (1981–2016) concentrations of ambient fine particulate matter across North America from chemical transport modeling, satellite remote sensing, and ground-based measurements. Environ Sci Technol. 2019;53(9):5071–9. https://doi.org/10.1021/acs.est.8b06875.

    Article  CAS  PubMed  Google Scholar 

  63. Akita Y, Baldasano JM, Beelen R, Cirach M, de Hoogh K, Hoek G, et al. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework. Environ Sci Technol. 2014;48(8):4452–9. https://doi.org/10.1021/es405390e.

    Article  CAS  PubMed  Google Scholar 

  64. Jerrett M, Turner MC, Beckerman BS, Pope CA, Donkelaar AV, Martin RV, et al. Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. Environ Health Perspect. 2017;125(4):552–9. https://doi.org/10.1289/EHP575.

    Article  PubMed  Google Scholar 

  65. Paciorek CJ, Liu Y. Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter. Environ Health Perspect. 2009;117(6):904–9. https://doi.org/10.1289/ehp.0800360.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Belle JH, Liu Y. Evaluation of Aqua MODIS Collection 6 AOD Parameters for air quality research over the continental United States. Remote Sens. 2016;8(10):815.

    Article  Google Scholar 

  67. Belle JH, Chang HH, Wang Y, Hu X, Lyapustin A, Liu Y. The potential impact of satellite-retrieved cloud parameters on ground-level PM2.5 mass and composition. Int J Environ Res Public Health. 2017;14(10):1244.

    Article  PubMed Central  Google Scholar 

  68. Kumar N. What Can Affect AOD&#x2013;PM<sub>2.5</sub> Association? Environ Health Perspect. 2010;118(3):A109–10. https://doi.org/10.1289/ehp.0901732.

    Article  PubMed Central  Google Scholar 

  69. Matthias V, Arndt JA, Aulinger A, Bieser J. Denier van der Gon H, Kranenburg R et al. Modeling emissions for three-dimensional atmospheric chemistry transport models. J Air Waste Manage Assoc. 2018;68(8):763–800. https://doi.org/10.1080/10962247.2018.1424057.

    Article  CAS  Google Scholar 

  70. Sampson PD, Richards M, Szpiro AA, Bergen S, Sheppard L, Larson TV, et al. A regionalized national universal kriging model using partial least squares regression for estimating annual PM2.5 concentrations in epidemiology. Atmos Environ. 2013;75:383–92. https://doi.org/10.1016/j.atmosenv.2013.04.015.

    Article  CAS  Google Scholar 

  71. Young MT, Bechle MJ, Sampson PD, Szpiro AA, Marshall JD, Sheppard L, et al. Satellite-based NO2 and model validation in a national prediction model based on universal kriging and land-use regression. Environ Sci Technol. 2016;50(7):3686–94. https://doi.org/10.1021/acs.est.5b05099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoek G, Eeftens M, Beelen R, Fischer P, Brunekreef B, Boersma KF, et al. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country. Atmos Environ. 2015;105:173–80. https://doi.org/10.1016/j.atmosenv.2015.01.053.

    Article  CAS  Google Scholar 

  73. Bechle MJ, Millet DB, Marshall JD. Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area. Atmos Environ. 2013;69:345–53. https://doi.org/10.1016/j.atmosenv.2012.11.046.

    Article  CAS  Google Scholar 

  74. Kim S-Y, Song I. National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea. Environ Pollut. 2017;226:21–9. https://doi.org/10.1016/j.envpol.2017.03.056.

    Article  CAS  PubMed  Google Scholar 

  75. Hystad P, Setton E, Cervantes A, Poplawski K, Deschenes S, Brauer M, et al. Creating national air pollution models for population exposure assessment in Canada. Environ Health Perspect. 2011;119(8):1123–9. https://doi.org/10.1289/ehp.1002976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vienneau D, de Hoogh K, Bechle MJ, Beelen R, van Donkelaar A, Martin RV, et al. Western European land use regression incorporating satellite- and ground-based measurements of NO2 and PM10. Environ Sci Technol. 2013;47(23):13555–64. https://doi.org/10.1021/es403089q.

    Article  CAS  PubMed  Google Scholar 

  77. Novotny EV, Bechle MJ, Millet DB, Marshall JD. National satellite-based land-use regression: NO2 in the United States. Environ Sci Technol. 2011;45(10):4407–14. https://doi.org/10.1021/es103578x.

    Article  CAS  PubMed  Google Scholar 

  78. Keller JP, Drton M, Larson T, Kaufman JD, Sandler DP, Szpiro AA. Covariate-adaptive clustering of exposures for air pollution epidemiology cohorts. Ann Appl Stat. 2017;11(1):93–113. https://doi.org/10.1214/16-AOAS992.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lindstrom J, Szpiro AA, Sampson PD, Bergen S, Sheppard L. SpatioTemporal: An R Package for spatio-temporal modeling of air pollution. R Package Version 1.1.7. 2013. http://cran.r-project.org/web/packages/SpatioTemporal/index.html. .

  80. Sabath M, Di Q, Schwartz J, Braun D, Dominici F, Choirat C, editors. aipred: A flexible R package implementing methods for predicting air pollution. IEEE International Conference on Data Science and Advanced Analytics; 2018; Turin, Italy: IEEE.

  81. Wang M, Aaron CP, Madrigano J, Hoffman EA, Angelini E, Yang J, et al. Association between long-term exposure to ambient air pollution and change in quantitatively assessed emphysema and lung function. JAMA. 2019;322(6):546–56. https://doi.org/10.1001/jama.2019.10255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bi J, Wildani A, Chang HH, Liu Y. Incorporating low-cost sensor measurements into high-resolution PM2.5 modeling at a large spatial scale. Environ Sci Technol. 2020;54(4):2152–62. https://doi.org/10.1021/acs.est.9b06046.

    Article  CAS  PubMed  Google Scholar 

  83. Zusman M, Schumacher CS, Gassett AJ, Spalt EW, Austin E, Larson TV, et al. Calibration of low-cost particulate matter sensors: model development for a multi-city epidemiological study. Environ Int. 2020;134:105329. https://doi.org/10.1016/j.envint.2019.105329.

    Article  PubMed  Google Scholar 

Download references

Funding

This publication was developed under a STAR research assistance agreements RD831697 (MESA Air), RD-83830001 (MESA Air Next Stage), and RD83479601 (UW Center for Clean Air Research), awarded by the US Environmental Protection Agency. It has not been formally reviewed by the EPA. Research reported in this publication was also supported by the University of Washington EDGE Center of the NIA under award number: P30ES007033, by ECHO PATHWAYS (NIH grants: 1UG3OD023271-01 and 4UH3OD023271-03) and by grants R56ES026528 and P30ES007033 from NIEHS and R01ES026187 from NIA and NIEHS. This work was supported in part by the UW NIEHS sponsored Biostatistics, Epidemiologic and Bioinformatics Training in Environmental Health (BEBTEH) Training Grant, Grant #: NIEHS T32ES015459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kipruto Kirwa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The views expressed in this document are solely those of the authors and the EPA does not endorse any products or commercial services mentioned in this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Early Life Environmental Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirwa, K., Szpiro, A.A., Sheppard, L. et al. Fine-Scale Air Pollution Models for Epidemiologic Research: Insights From Approaches Developed in the Multi-ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Curr Envir Health Rpt 8, 113–126 (2021). https://doi.org/10.1007/s40572-021-00310-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-021-00310-y

Keywords

Navigation