Skip to main content

Advertisement

Log in

Is Urinary Cadmium a Biomarker of Long-term Exposure in Humans? A Review

  • Metals and Health (A Barchowsky, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

An Erratum to this article was published on 26 October 2016

This article has been updated

Abstract

Cadmium is a naturally-occurring element, and humans are exposed from cigarettes, food, and industrial sources. Following exposure, cadmium accumulates in the kidney and is slowly released into the urine, usually proportionally to the levels found in the kidneys. Cadmium levels in a single spot urine sample have been considered indicative of long-term exposure to cadmium; however, such a potentially exceptional biomarker requires careful scrutiny. In this review, we report good to excellent temporal stability of urinary cadmium (intraclass correlation coefficient 0.66–0.81) regardless of spot urine or first morning void sampling. Factors such as changes in smoking habits and diseases characterized by increased excretion of proteins may produce short-term changes in urinary cadmium levels. We recommend that epidemiologists use this powerful biomarker in prospective studies stratified by smoking status, along with thoughtful consideration of additional factors that can influence renal physiology and cadmium excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 26 October 2016

    An erratum to this article has been published.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. ATSDR (Agency for Toxic Substances & Disease registry) (2012) Toxicological profile for Cadmium. Atlanta, GA. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15.

  2. Jaworowski Z, Barbalat F, Blain C, et al. Heavy metals in human and animal bones from ancient and contemporary France. Sci Total Environ. 1985;43(1–2):103–26.

    Article  CAS  Google Scholar 

  3. Nordberg GF. Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol. 2009;238(3):192–200. doi:10.1016/j.taap.2009.03.015.

    Article  CAS  PubMed  Google Scholar 

  4. Singh BR. Trace element availability to plants in agricultural soils, with special emphasis on fertilizer inputs. Environ Rev. 1994;2(2):133–46. doi:10.1139/a94-009.

    Article  CAS  Google Scholar 

  5. Kjellstrom T. Exposure and accumulation of cadmium in populations from Japan, the United States, and Sweden. Environ Health Perspect. 1979;28:169–97.

    Article  CAS  Google Scholar 

  6. Olsson IM, Eriksson J, Oborn I, et al. Cadmium in food production systems: a health risk for sensitive population groups. Ambio. 2005;34(4–5):344–51.

    Article  Google Scholar 

  7. Jarup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238(3):201–8. doi:10.1016/j.taap.2009.04.020.

    Article  CAS  PubMed  Google Scholar 

  8. Egan SK, Bolger PM, Carrington CD. Update of US FDA’s total diet study food list and diets. J Expo Sci Environ Epidemiol. 2007;17(6):573–82. doi:10.1038/sj.jes.7500554.

    Article  CAS  PubMed  Google Scholar 

  9. van Balken J. Prospective EU Cd regulation for fertilizers. In: IFA 2004 technical conference beijing, 04/20/2004 2004. Beijing; 2004.

  10. Plachy J. Cadmium recycling in the United States in 2000 vol U.S. GEOLOGICAL SURVEY CIRCULAR 1196–O. Reston: U.S. Geological Survey; 2000.

    Google Scholar 

  11. Mobley JD, Rackley K, Pope A, et al. Persistent bioaccumulative toxic emissions in the US. Paper presented at the long range transport workshop. Ann Arbor, MI; 2003.

  12. Falck Jr FY, Fine LJ, Smith RG, et al. Occupational cadmium exposure and renal status. Am J Ind Med. 1983;4(4):541–9.

    Article  CAS  Google Scholar 

  13. Jarup L, Elinder CG, Spang G. Cumulative blood-cadmium and tubular proteinuria: a dose–response relationship. Int Arch Occup Environ Health. 1988;60(3):223–9.

    Article  CAS  Google Scholar 

  14. Thun MJ, Osorio AM, Schober S, et al. Nephropathy in cadmium workers: assessment of risk from airborne occupational exposure to cadmium. Br J Ind Med. 1989;46(10):689–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nogawa K, Kobayashi E, Honda R, et al. Renal dysfunctions of inhabitants in a cadmium-polluted area. Environ Res. 1980;23(1):13–23.

    Article  CAS  Google Scholar 

  16. Stayner L, Smith R, Thun M, et al. A dose–response analysis and quantitative assessment of lung cancer risk and occupational cadmium exposure. Ann Epidemiol. 1992;2(3):177–94.

    Article  CAS  Google Scholar 

  17. Sorahan T, Lancashire R. Lung cancer findings from the NIOSH study of United States cadmium recovery workers: a cautionary note. Occup Environ Med. 1994;51(2):139–40.

    Article  CAS  Google Scholar 

  18. Sorahan T, Lancashire RJ. Lung cancer mortality in a cohort of workers employed at a cadmium recovery plant in the United States: an analysis with detailed job histories. Occup Environ Med. 1997;54(3):194–201.

    Article  CAS  Google Scholar 

  19. Thun MJ, Schnorr TM, Smith AB, et al. Mortality among a cohort of U.S. cadmium production workers—an update. J Natl Cancer Inst. 1985;74(2):325–33.

    CAS  PubMed  Google Scholar 

  20. International Agency for Research on Cancer (IARC). Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Monogr Eval Carcinog Risk Hum. 1993;58.

  21. Shigematsu I. The epidemiological approach to cadmium pollution in Japan. Ann Acad Med Singapore. 1984;13(2):231–6.

    CAS  PubMed  Google Scholar 

  22. Jarup L, Berglund M, Elinder CG, et al. Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24 Suppl 1:1–51.

    PubMed  Google Scholar 

  23. Kido T, Nogawa K, Yamada Y, et al. Osteopenia in inhabitants with renal dysfunction induced by exposure to environmental cadmium. Int Arch Occup Environ Health. 1989;61(4):271–6.

    Article  CAS  Google Scholar 

  24. Kagamimori S, Watanabe M, Nakagawa H, et al. Case–control study on cardiovascular function in females with a history of heavy exposure to cadmium. Bull Environ Contam Toxicol. 1986;36(4):484–90.

    Article  CAS  Google Scholar 

  25. Wang D, Sun H, Wu Y, et al. Tubular and glomerular kidney effects in the Chinese general population with low environmental cadmium exposure. Chemosphere. 2016;147:3–8. doi:10.1016/j.chemosphere.2015.11.069.

    Article  CAS  PubMed  Google Scholar 

  26. Noonan CW, Sarasua SM, Campagna D, et al. Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ Health Perspect. 2002;110(2):151–5.

    Article  CAS  Google Scholar 

  27. Akesson A, Lundh T, Vahter M, et al. Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect. 2005;113(11):1627–31.

    Article  Google Scholar 

  28. Akesson A, Bjellerup P, Lundh T, et al. Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect. 2006;114(6):830–4.

    Article  Google Scholar 

  29. Gallagher CM, Kovach JS, Meliker JR. Urinary cadmium and osteoporosis in U.S. Women >or= 50 years of age: NHANES 1988–1994 and 1999–2004. Environ Health Perspect. 2008;116(10):1338–43. doi:10.1289/ehp.11452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alfven T, Elinder CG, Carlsson MD, et al. Low-level cadmium exposure and osteoporosis. J Bone Miner Res. 2000;15(8):1579–86. doi:10.1359/jbmr.2000.15.8.1579.

    Article  CAS  PubMed  Google Scholar 

  31. Staessen JA, Roels HA, Emelianov D, et al. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet. 1999;353(9159):1140–4.

    Article  CAS  Google Scholar 

  32. Tellez-Plaza M, Jones MR, Dominguez-Lucas A, et al. Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr Atheroscler Rep. 2013;15(10):356. doi:10.1007/s11883-013-0356-2.

    Article  CAS  PubMed  Google Scholar 

  33. Akesson A, Julin B, Wolk A. Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res. 2008;68(15):6435–41. doi:10.1158/0008-5472.CAN-08-0329.

    Article  CAS  PubMed  Google Scholar 

  34. McElroy JA, Shafer MM, Trentham-Dietz A, et al. Cadmium exposure and breast cancer risk. J Natl Cancer Inst. 2006;98(12):869–73. doi:10.1093/jnci/djj233.

    Article  CAS  PubMed  Google Scholar 

  35. Arora M, Weuve J, Schwartz J, et al. Association of environmental cadmium exposure with periodontal disease in U.S. adults. Environ Health Perspect. 2009;117(5):739–44. doi:10.1289/ehp.0800312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gunn SA, Gould TC. Selective accumulation of Cd115 by cortex of rat kidney. Proc Soc Exp Biol Med. 1957;96(3):820–3.

    Article  CAS  Google Scholar 

  37. Nordberg GF, Nishiyama K. Whole-body and hair retention of cadmium in mice including an autoradiographic study on organ distribution. Arch Environ Health. 1972;24(3):209–14.

    Article  CAS  Google Scholar 

  38. Gairola CG, Wagner GJ. Cadmium accumulation in the lung, liver and kidney of mice and rats chronically exposed to cigarette smoke. J Appl Toxicol. 1991;11(5):355–8.

    Article  CAS  Google Scholar 

  39. Nordberg GF, Piscator M, Nordberg M. On the distribution of cadmium in blood. Acta Pharmacol Toxicol (Copenh). 1971;30(3):289–95.

    CAS  Google Scholar 

  40. Nordberg M. Studies on metallothionein and cadmium. Environ Res. 1978;15(3):381–404.

    Article  CAS  Google Scholar 

  41. Garty M, Wong KL, Klaassen CD. Redistribution of cadmium to blood of rats. Toxicol Appl Pharmacol. 1981;59(3):548–54.

    Article  CAS  Google Scholar 

  42. Akesson A, Berglund M, Schutz A, et al. Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health. 2002;92(2):284–7.

    Article  Google Scholar 

  43. Berglund M, Akesson A, Nermell B, et al. Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environ Health Perspect. 1994;102(12):1058–66.

    Article  CAS  Google Scholar 

  44. Kippler M, Ekstrom EC, Lonnerdal B, et al. Influence of iron and zinc status on cadmium accumulation in Bangladeshi women. Toxicol Appl Pharmacol. 2007;222(2):221–6. doi:10.1016/j.taap.2007.04.009.

    Article  CAS  PubMed  Google Scholar 

  45. Vahter M, Akesson A, Liden C, et al. Gender differences in the disposition and toxicity of metals. Environ Res. 2007;104(1):85–95. doi:10.1016/j.envres.2006.08.003.

    Article  CAS  PubMed  Google Scholar 

  46. Klaassen CD, Liu J, Diwan BA. Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol. 2009;238(3):215–20. doi:10.1016/j.taap.2009.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267–94. doi:10.1146/annurev.pharmtox.39.1.267.

    Article  CAS  PubMed  Google Scholar 

  48. Nordberg GF, Nordberg M, Piscator M, et al. Separation of two forms of rabbit metallothionein by isoelectric focusing. Biochem J. 1972;126(3):491–8.

    Article  CAS  Google Scholar 

  49. Cherian MG, Shaikh ZA. Metabolism of intravenously injected cadmium-binding protein. Biochem Biophys Res Commun. 1975;65(3):863–9.

    Article  CAS  Google Scholar 

  50. Foulkes EC. Renal tubular transport of cadmium-metallothionein. Toxicol Appl Pharmacol. 1978;45(2):505–12.

    Article  CAS  Google Scholar 

  51. Nordberg M, Nordberg GF. Distribution of metallothionein-bound cadmium and cadmium chloride in mice: preliminary studies. Environ Health Perspect. 1975;12:103–8.

    Article  CAS  Google Scholar 

  52. Fowler BA, Nordberg GF. The renal toxicity of cadmium metallothionein: morphometric and X-ray microanalytical studies. Toxicol Appl Pharmacol. 1978;46(3):609–23.

    Article  CAS  Google Scholar 

  53. Amzal B, Julin B, Vahter M, et al. Population toxicokinetic modeling of cadmium for health risk assessment. Environ Health Perspect. 2009;117(8):1293–301. doi:10.1289/ehp.0800317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nordberg GF, Nogawa K, Nordberg M, et al. Handbook on the toxicology of metals: cadmium. Elsevier, Amsterdam; 2007. p. 445–486.

  55. Friberg L, Piscator M, Nordberg GF, et al. Cadmium in the environment. 2nd ed. Boca Raton: CRC Press; 1974.

    Google Scholar 

  56. Kjellstrom T, Nordberg GF. A kinetic model of cadmium metabolism in the human being. Environ Res. 1978;16(1–3):248–69.

    Article  CAS  Google Scholar 

  57. Roels H, Lauwerys R, Dardenne AN. The critical level of cadmium in human renal cortex: a reevaluation. Toxicol Lett. 1983;15(4):357–60.

    Article  CAS  Google Scholar 

  58. Roels HA, Lauwerys RR, Buchet JP, et al. In vivo measurement of liver and kidney cadmium in workers exposed to this metal: its significance with respect to cadmium in blood and urine. Environ Res. 1981;26(1):217–40.

    Article  CAS  Google Scholar 

  59. Zalups RK, Ahmad S. Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol. 2003;186(3):163–88.

    Article  CAS  Google Scholar 

  60. Boeniger MF, Lowry LK, Rosenberg J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J. 1993;54(10):615–27. doi:10.1080/15298669391355134.

    Article  CAS  PubMed  Google Scholar 

  61. Barr DB, Wilder LC, Caudill SP, et al. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200.

    Article  CAS  Google Scholar 

  62. Suwazono Y, Akesson A, Alfven T, et al. Creatinine versus specific gravity-adjusted urinary cadmium concentrations. Biomarkers. 2005;10(2–3):117–26. doi:10.1080/13547500500159001.

    Article  CAS  PubMed  Google Scholar 

  63. Imran S, Eva G, Christopher S, et al. Is specific gravity a good estimate of urine osmolality? J Clin Lab Anal. 2010;24(6):426–30. doi:10.1002/jcla.20424.

    Article  PubMed  Google Scholar 

  64. Hays SM, Aylward LL, Blount BC. Variation in urinary flow rates according to demographic characteristics and body mass index in NHANES: potential confounding of associations between health outcomes and urinary biomarker concentrations. Environ Health Perspect. 2015;123(4):293–300. doi:10.1289/ehp.1408944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Voinescu GC, Shoemaker M, Moore H, et al. The relationship between urine osmolality and specific gravity. Am J Med Sci. 2002;323(1):39–42.

    Article  Google Scholar 

  66. Weaver VM, Kim NS, Lee BK, et al. Differences in urine cadmium associations with kidney outcomes based on serum creatinine and cystatin C. Environ Res. 2011;111(8):1236–42. doi:10.1016/j.envres.2011.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weaver VM, Vargas GG, Silbergeld EK, et al. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ Res. 2014;132:226–32. doi:10.1016/j.envres.2014.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gunier RB, Horn-Ross PL, Canchola AJ, et al. Determinants and within-person variability of urinary cadmium concentrations among women in northern California. Environ Health Perspect. 2013;121(6):643–9. doi:10.1289/ehp.1205524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang YX, Feng W, Zeng Q, et al. Variability of metal levels in spot, first morning, and 24-hour urine samples over a 3-month period in healthy adult Chinese men. Environ Health Perspect. 2015. doi:10.1289/ehp.1409551.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Smolders R, Koch HM, Moos RK, et al. Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 1: metals. Toxicol Lett. 2014;231(2):249–60. doi:10.1016/j.toxlet.2014.08.014.

    Article  CAS  PubMed  Google Scholar 

  71. Sanchez-Rodriguez JE, Bartolome M, Canas AI, et al. Anti-smoking legislation and its effects on urinary cotinine and cadmium levels. Environ Res. 2015;136:227–33. doi:10.1016/j.envres.2014.09.033. Reports on the correlation between urine samples measured a year apart, and the impact of anti-smoking legislation on urinary cadmium levels in non-smokers.

    Article  CAS  PubMed  Google Scholar 

  72. Akerstrom M, Barregard L, Lundh T, et al. Variability of urinary cadmium excretion in spot urine samples, first morning voids, and 24 h urine in a healthy non-smoking population: implications for study design. J Expo Sci Environ Epidemiol. 2014;24(2):171–9. doi:10.1038/jes.2013.58.

    Article  CAS  PubMed  Google Scholar 

  73. Arisawa K, Nakano A, Honda S, et al. Reproducibility of urinary beta 2-microglobulin and cadmium excretion among residents in a cadmium-polluted area during a 3-year period. Toxicol Lett. 1997;91(2):147–52.

    Article  CAS  Google Scholar 

  74. Vacchi-Suzzi C, Porucznik CA, Cox KJ, et al. Temporal variability of urinary cadmium in spot urine samples and first morning voids. J Expos Sci Environ Epidemiol. 2016. doi:10.1038/jes.2016.28.

    Article  Google Scholar 

  75. Rosner B. Multisample inference. 5th ed. Pacific Grove: Fundamentals of Biostatistics; 2002.

    Google Scholar 

  76. Ikeda M, Ezaki T, Tsukahara T, et al. Reproducibility of urinary cadmium, alpha1-microglobulin, and beta2-microglobulin levels in health screening of the general population. Arch Environ Contam Toxicol. 2005;48(1):135–40.

    Article  CAS  Google Scholar 

  77. Jarrett JM, Xiao G, Caldwell KL, et al. Eliminating molybdenum oxide interference in urine cadmium biomonitoring using ICP-DRC-MS. J Anal At Spectrom. 2008;23(7):962–7. doi:10.1039/B801927D.

    Article  CAS  Google Scholar 

  78. Kobayashi E, Suwazono Y, Uetani M, et al. Association between lifetime cadmium intake and cadmium concentration in individual urine. Bull Environ Contam Toxicol. 2005;74(5):817–21.

    Article  CAS  Google Scholar 

  79. Shimbo S, Zhang ZW, Moon CS, et al. Correlation between urine and blood concentrations, and dietary intake of cadmium and lead among women in the general population of Japan. Int Arch Occup Environ Health. 2000;73(3):163–70.

    Article  CAS  Google Scholar 

  80. Chaumont A, Voisin C, Deumer G, et al. Associations of urinary cadmium with age and urinary proteins: further evidence of physiological variations unrelated to metal accumulation and toxicity. Environ Health Perspect. 2013;121(9):1047–53. doi:10.1289/ehp.1306607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Julin B, Vahter M, Amzal B, et al. Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores. Environ Health. 2011;10:105. doi:10.1186/1476-069X-10-105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vacchi-Suzzi C, Eriksen KT, Levine K, et al. Dietary intake estimates and urinary cadmium levels in Danish postmenopausal women. PLoS One. 2015;10(9):e0138784. doi:10.1371/journal.pone.0138784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McElroy JA, Shafer MM, Hampton JM, et al. Predictors of urinary cadmium levels in adult females. Sci Total Environ. 2007;382(2–3):214–23. doi:10.1016/j.scitotenv.2007.04.015.

    Article  CAS  PubMed  Google Scholar 

  84. Adams SV, Newcomb PA, Shafer MM, et al. Sources of cadmium exposure among healthy premenopausal women. Sci Total Environ. 2011;409(9):1632–7. doi:10.1016/j.scitotenv.2011.01.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ikeda M, Moriguchi J, Ezaki T, et al. Smoking-induced increase in urinary cadmium levels among Japanese women. Int Arch Occup Environ Health. 2005;78(7):533–40. doi:10.1007/s00420-005-0612-z.

    Article  CAS  PubMed  Google Scholar 

  86. Liu B, Feng W, Wang J, et al. Association of urinary metals levels with type 2 diabetes risk in coke oven workers. Environ Pollut. 2016;210:1–8. doi:10.1016/j.envpol.2015.11.046.

    Article  CAS  PubMed  Google Scholar 

  87. Garcia-Esquinas E, Pollan M, Tellez-Plaza M, et al. Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect. 2014. doi:10.1289/ehp.1306587.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Adams SV, Newcomb PA. Cadmium blood and urine concentrations as measures of exposure: NHANES 1999–2010. J Expo Sci Environ Epidemiol. 2014;24(2):163–70. doi:10.1038/jes.2013.55. Models the impact of smoking cessation on urinary and blood cadmium levels and the degree to which each reflects short-term and long-term exposures.

    Article  CAS  PubMed  Google Scholar 

  89. Tellez-Plaza M, Navas-Acien A, Caldwell KL, et al. Reduction in cadmium exposure in the United States population, 1988–2008: the contribution of declining smoking rates. Environ Health Perspect. 2012;120(2):204–9. doi:10.1289/ehp.1104020.

    Article  CAS  PubMed  Google Scholar 

  90. Mortensen ME, Wong L-Y, Osterloh JD. Smoking status and urine cadmium above levels associated with subclinical renal effects in U.S. adults without chronic kidney disease. Int J Hyg Environ Health. 2011;214(4):305–10. doi:10.1016/j.ijheh.2011.03.004.

    Article  CAS  PubMed  Google Scholar 

  91. Barr DB, Wilder LC, Caudill SP, et al. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200. doi:10.1289/ehp.7337.

    Article  CAS  PubMed  Google Scholar 

  92. Olsson IM, Bensryd I, Lundh T, et al. Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. Environ Health Perspect. 2002;110(12):1185–90.

    Article  CAS  Google Scholar 

  93. Gallagher CM, Chen JJ, Kovach JS. The relationship between body iron stores and blood and urine cadmium concentrations in US never-smoking, non-pregnant women aged 20–49 years. Environ Res. 2011;111(5):702–7. doi:10.1016/j.envres.2011.03.007.

    Article  CAS  PubMed  Google Scholar 

  94. Vesey DA. Transport pathways for cadmium in the intestine and kidney proximal tubule: focus on the interaction with essential metals. Toxicol Lett. 2010;198(1):13–9. doi:10.1016/j.toxlet.2010.05.004.

    Article  CAS  PubMed  Google Scholar 

  95. Ryu DY, Lee SJ, Park DW, et al. Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett. 2004;152(1):19–25. doi:10.1016/j.toxlet.2004.03.015.

    Article  CAS  PubMed  Google Scholar 

  96. Quraishi SM, Adams SV, Shafer M, et al. Urinary cadmium and estimated dietary cadmium in the Women’s Health Initiative. J Expo Sci Environ Epidemiol. 2016;26(3):303–8. doi:10.1038/jes.2015.40.

    Article  CAS  PubMed  Google Scholar 

  97. Moon CS, Zhang ZW, Shimbo S, et al. Evaluation of urinary cadmium and lead as markers of background exposure of middle-aged women in Korea: dietary intake as an influential factor. Toxicol Lett. 1999;108(2–3):173–8.

    Article  CAS  Google Scholar 

  98. Bernard A. Confusion about cadmium risks: the unrecognized limitations of an extrapolated paradigm. Environ Health Perspect. 2015. doi:10.1289/ehp.1509691. A thoughtful commentary bringing to light some of the challenges with the urinary cadmium biomarker, especially important for assessment of risk in cross-sectional studies.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Akerstrom M, Sallsten G, Lundh T, et al. Associations between urinary excretion of cadmium and proteins in a nonsmoking population: renal toxicity or normal physiology? Environ Health Perspect. 2013;121(2):187–91. doi:10.1289/ehp.1205418.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Scott Adams, Alfred Bernard, Esther Garcia-Esquinas, Meian He, Ana Navas-Acien, Peggy Reynolds, and Maria Tellez-Plaza who kindly provided additional data from their studies in order for us to prepare Fig. 2 of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Vacchi-Suzzi.

Ethics declarations

Conflict of Interest

Caterina Vacchi-Suzzi, Danielle Kruse, James Harrington, Keith Levine, and Jaymie R. Meliker declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Metals and Health

The original version of this article was revised: The presentation of Figure 1 was incorrect. Figure 1 was meaningless as it shows because some of the data in the figure was missing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacchi-Suzzi, C., Kruse, D., Harrington, J. et al. Is Urinary Cadmium a Biomarker of Long-term Exposure in Humans? A Review. Curr Envir Health Rpt 3, 450–458 (2016). https://doi.org/10.1007/s40572-016-0107-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-016-0107-y

Keywords

Navigation