Skip to main content
Log in

Computational analysis of thermo-mechanical characteristics in refill FSSW of thin AA7075-T6 sheets using smoothed-particle hydrodynamics

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A 3D thermo-mechanical model was developed employing the smoothed-particle hydrodynamics (SPH) technique to simulate the refill friction stir spot welding (refill FSSW) process and its tool plunging variants. SPH is a Lagrangian particle-based approach that can directly trace field variables’ histories, handle large material deformations, and capture moving interfaces. These features of SPH make it appealing for the refill FSSW process, where the change of field variables is challenging to monitor experimentally. The numerical model of the shoulder-plunging variant (SP-refill FSSW) was validated by comparing results to experimental thermal data from the published literature. The temperatures correspond well with the experimental thermal data, and the model accurately predicted temperatures in the weld zone with an error of 0.52%. The thermal distribution, plastic strains, and material flow behaviours of the SP-refill FSSW and probe plunging variants (PP-refill FSSW) during the process are presented. The hook formation in connection with the material flow of the process is explained. The SPH numerical model can simulate refill FSSW, withstand severe deformations, and efficiently predict the field variables that help in a deeper understanding of the thermo-mechanical characteristics and joint formation in refill FSSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Note that the dimension of the shoulder, probe and clamping ring are varied depending on the variant.

References

  1. Iwashita T (2003) Method and apparatus for joining. Patente, 6601751:B2

  2. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding - process, weldment structure and properties. Prog Mater Sci 53:980–1023. https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  Google Scholar 

  3. Schilling C, Santos J dos (2004) Method and device for joining at least two adjoining work pieces by friction welding

  4. Witthar K, Brown J, Burford D (2011) Swept FSSW in Aluminum Alloys through Sealants and Surface Treatments. In: Friction Stir Welding and Processing VI. John Wiley & Sons, Ltd, pp 417–424

  5. Okamoto K, Hunt F, Hirano S (2005) Development of Friction Stir Welding Technique and Machine for Aluminum Sheet Metal Assembly- Friction Stir Welding of Aluminum for Automotive Applications (2) -. pp 2005–01–1254

  6. Padhy GK, Wu CS, Gao S (2018) Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: a review. J Mater Sci Technol 34:1–38. https://doi.org/10.1016/j.jmst.2017.11.029

    Article  Google Scholar 

  7. Suresh S, Venkatesan K, Natarajan E, Rajesh S (2021) Performance analysis of nano silicon carbide reinforced swept friction stir spot weld joint in AA6061-T6 alloy. SILICON 13:3399–3412. https://doi.org/10.1007/s12633-020-00751-4

    Article  Google Scholar 

  8. Balamurugan M, Gopi S, Mohan DG (2021) Influence of tool pin profiles on the filler added friction stir spot welded dissimilar aluminium alloy joints. Mater Res Exp 8(9):096531. https://doi.org/10.1088/2053-1591/ac2771

    Article  Google Scholar 

  9. EsmerioMazzaferro JA, de Rosendo T, S, PetryMazzaferro CC, et al (2009) Preliminary study on the mechanical behavior of friction spot welds. Soldag Inspecao 14:238–247. https://doi.org/10.1590/S0104-92242009000300007

    Article  Google Scholar 

  10. Shen Z, Chen Y, Hou JSC et al (2015) Influence of processing parameters on microstructure and mechanical performance of refill friction stir spot welded 7075–T6 aluminium alloy. Sci Technol Weld Join 20:48–57. https://doi.org/10.1179/1362171814Y.0000000253

    Article  Google Scholar 

  11. Suhuddin UFH, Fischer V, Kostka A, dos Santos JF (2017) Microstructure evolution in refill friction stir spot weld of a dissimilar Al-Mg alloy to Zn-coated steel. Sci Technol Weld Join 22:658–665. https://doi.org/10.1080/13621718.2017.1300744

    Article  Google Scholar 

  12. Shen Z, Chen J, Ding Y et al (2018) Role of interfacial reaction on the mechanical performance of Al/steel dissimilar refill friction stir spot welds. Sci Technol Weld Join 23:462–477. https://doi.org/10.1080/13621718.2017.1414022

    Article  Google Scholar 

  13. Shen Z, Li WY, Ding Y et al (2020) Material flow during refill friction stir spot welded dissimilar Al alloys using a grooved tool. J Manuf Process 49:260–270. https://doi.org/10.1016/j.jmapro.2019.11.029

    Article  Google Scholar 

  14. Cao JY, Zhang CC, Xing YF, Wang M (2020) Pin plunging reinforced refill friction stir spot welding of Alclad 2219 to 7075 alloy. J Mater Process Technol 284:116760. https://doi.org/10.1016/j.jmatprotec.2020.116760

    Article  Google Scholar 

  15. Marode RV, Pedapati SR, Lemma TA, Awang M (2023) A review on numerical modelling techniques in friction stir processing: current and future perspective. Arch Civ Mech Eng 23:154. https://doi.org/10.1007/s43452-023-00688-6

    Article  Google Scholar 

  16. Muci-Kuechler KH, Kalagara S, Arbegast WJ (2010) Simulation of a refill friction stir spot welding process using a fully coupled thermo-mechanical FEM model. J Manuf Sci Eng-Trans Asme 132:014503. https://doi.org/10.1115/1.4000881

    Article  Google Scholar 

  17. Cao JY, Wang M, Kong L et al (2017) Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061–T6. Int J Adv Manuf Technol 89:2129–2139. https://doi.org/10.1007/s00170-016-9247-3

    Article  Google Scholar 

  18. Ji S, Li Z, Wang Y et al (2017) Material flow behavior of refill friction stir spot welded LY12 Aluminum Alloy. High Temp Mater Process 36:495–504. https://doi.org/10.1515/htmp-2015-0254

    Article  Google Scholar 

  19. Kubit A, Trzepiecinski T (2020) A fully coupled thermo-mechanical numerical modelling of the refill friction stir spot welding process in Alclad 7075–T6 aluminium alloy sheets. Arch Civ Mech Eng 20:117. https://doi.org/10.1007/s43452-020-00127-w

    Article  Google Scholar 

  20. Zhang HF, Zhou L, Li GH et al (2021) Prediction and validation of temperature distribution and material flow during refill friction stir spot welding of AZ91D magnesium alloy. Sci Technol Weld Join 26:153–160. https://doi.org/10.1080/13621718.2020.1864864

    Article  Google Scholar 

  21. Janga VSR, Awang M (2022) Influence of plunge depth on temperatures and material flow behavior in refill friction stir spot welding of thin AA7075-T6 sheets: a numerical study. Metals 12:927. https://doi.org/10.3390/met12060927

    Article  Google Scholar 

  22. Janga VSR, Awang M, Yamin MF et al (2021) Experimental and numerical analysis of refill friction stir spot welding of thin AA7075-T6 sheets. Materials 14:7485. https://doi.org/10.3390/ma14237485

    Article  Google Scholar 

  23. Berger E, Miles M, Curtis A et al (2022) 2D axisymmetric modeling of refill friction stir spot welding and experimental validation. J Manuf Mater Process 6:89. https://doi.org/10.3390/jmmp6040089

    Article  Google Scholar 

  24. Raza SH, Mittnacht T, Diyoke G et al (2022) Modeling of temperature- and strain-driven intermetallic compound evolution in an Al–Mg system via a multiphase-field approach with application to refill friction stir spot welding. J Mech Phys Solids 169:105059. https://doi.org/10.1016/j.jmps.2022.105059

    Article  MathSciNet  Google Scholar 

  25. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389. https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  26. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024. https://doi.org/10.1086/112164

    Article  Google Scholar 

  27. Tartakovsky A, Grant G, Sun X, Khaleel M (2006) Modeling of Friction Stir Welding (FSW) Process with Smooth Particle Hydrodynamics (SPH). pp 2006–01–1394

  28. Bhojwani S (2007) Smoothed particle hydrodynamics modeling of the friction stir welding process. ETD Collect Univ Tex El Paso 1–78

  29. Pan W, Li D, Tartakovsky AM et al (2013) A new smoothed particle hydrodynamics non-newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy. Int J Plast 48:189–204. https://doi.org/10.1016/j.ijplas.2013.02.013

    Article  Google Scholar 

  30. Fraser K, Kiss LI, St-Georges L, Drolet D (2018) Optimization of friction stir weld joint quality using a meshfree fully-coupled thermo-mechanics approach. Metals 8:101. https://doi.org/10.3390/met8020101

    Article  Google Scholar 

  31. Ansari MA, Behnagh RA (2019) Numerical study of friction stir welding plunging phase using smoothed particle hydrodynamics. Model Simul Mater Sci Eng 27:055006. https://doi.org/10.1088/1361-651X/ab1ca7

    Article  Google Scholar 

  32. Marode RV, Pedapati SR, Lemma TA, Janga VSR (2022) Thermo-mechanical modelling of friction stir processing of AZ91 alloy: using smoothed-particle hydrodynamics. Lubricants 10:355. https://doi.org/10.3390/lubricants10120355

    Article  Google Scholar 

  33. Flores-Johnson EA, Shen L, Guiamatsia I, Nguyen GD (2014) Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Compos Sci Technol 96:13–22. https://doi.org/10.1016/j.compscitech.2014.03.001

    Article  Google Scholar 

  34. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574. https://doi.org/10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  35. Tang W, Guo X, McClure JC et al (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7:163–172. https://doi.org/10.1106/55TF-PF2G-JBH2-1Q2B

    Article  Google Scholar 

  36. Gerlich A, Avramovic-Cingara G, North TH (2006) Stir zone microstructure and strain rate during Al 7075–T6 friction stir spot welding. Metall Mater Trans A 37:2773–2786. https://doi.org/10.1007/BF02586110

    Article  Google Scholar 

  37. Starink MJ (2001) Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys. Mater Sci Technol 17:1324–1328. https://doi.org/10.1179/026708301101509449

    Article  Google Scholar 

  38. Zhao YQ, Liu HJ, Chen SX et al (2014) Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy. Mater Des 62:40–46. https://doi.org/10.1016/j.matdes.2014.05.012

    Article  Google Scholar 

  39. Tier MD, Rosendo TS, dos Santos JF et al (2013) The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J Mater Process Technol 213:997–1005. https://doi.org/10.1016/j.jmatprotec.2012.12.009

    Article  Google Scholar 

  40. Janga VSR, Awang M, Pedapati SR (2023) A numerical study on the effect of tool speeds on temperatures and material flow behaviour in refill friction stir spot welding of thin AA7075-T6 sheets. Materials 16:3108. https://doi.org/10.3390/ma16083108

    Article  Google Scholar 

  41. Shen J, Lage SBM, Suhuddin UFH et al (2018) Texture development and material flow behavior during refill friction stir spot welding of AlMgSc. Metall Mater Trans A 49:241–254. https://doi.org/10.1007/s11661-017-4381-6

    Article  Google Scholar 

  42. Sun G-D, Zhou L, Zhang R-X et al (2020) Effect of sleeve plunge depth on interface/mechanical characteristics in refill friction stir spot welded joint. Acta Metall Sin Engl Lett 33:551. https://doi.org/10.1007/s40195-019-00968-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding they received from the Graduate Assistant Scheme at Universiti Teknologi PETRONAS and the help they received from Altair Engineering. Additionally, we appreciate the High-Performance Computing support for the simulations provided by the UTP-Altair Centre of Excellence for Applied Scientific Computing.

Author information

Authors and Affiliations

Authors

Contributions

VSRJ designed the methodology, conducted simulations and numerical analysis, and drafted and revised the manuscript. MA and NS provided resources and supervised the study, with MA also contributing to the methodology and manuscript review. CRM and EBW assisted with numerical modelling and manuscript review.

Corresponding author

Correspondence to Mokhtar Awang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janga, V.S.R., Awang, M., Sallih, N. et al. Computational analysis of thermo-mechanical characteristics in refill FSSW of thin AA7075-T6 sheets using smoothed-particle hydrodynamics. Comp. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00663-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00663-1

Keywords

Navigation