Skip to main content
Log in

Discrete element modeling of delamination behavior in thermal barrier coating

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Delamination is a common failure mode in thermal barrier coatings (TBCs). In this work, we present an improved discrete element (DE) model to simulate the coating delamination behaviors during micro-indentation tests to better understand the failure mechanisms. In the DE model, the linear parallel bond model is first calibrated with the experimental properties from the literature. Then, both the 2D Vickers and Rockwell micro-indentation tests were simulated with layered coating microstructures. The model results reveal that the coating interface delimitation has two distinctive stages, i.e., crack initiation and propagation. Additionally, TBC systems with a thicker top are more susceptible to delamination due to less strain compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ozgurluk Y et al (2021) Investigation of calcium–magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method. Surf Coat Technol 411:126969

    Article  Google Scholar 

  2. Tang Y et al (2011) High-efficiency diode-pumped acousto-optically Q-switched 1123 nm ceramic nd: YAG laser. Laser Phys 21(4):695–699

    Article  Google Scholar 

  3. Wang L et al (2012) Finite element simulation of residual stress of double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings using birth and death element technique. Comput Mater Sci 53(1):117–127

    Article  Google Scholar 

  4. Hernandez MT et al (2011) On the opening of a class of fatigue cracks due to thermo-mechanical fatigue testing of thermal barrier coatings. Comput Mater Sci 50(9):2561–2572

    Article  Google Scholar 

  5. Bobzin K et al (2020) Key influencing factors for the thermal shock resistance of La2Zr2O7-based multilayer TBCs. Surf Coat Technol 396:125951

    Article  Google Scholar 

  6. Xu Z et al (2010) Thermal cycling behavior of La2Zr2O7 coating with the addition of Y2O3 by EB-PVD. J Alloys Compd 508(1):85–93

    Article  Google Scholar 

  7. Holmberg K et al (2007) Friction and wear of coated surfaces—scales, modelling and simulation of tribomechanisms. Surf Coat Technol 202(4–7):1034–1049

    Article  Google Scholar 

  8. Fouliard Q, Ghosh R, Raghavan S (2020) Quantifying thermal barrier coating delamination through luminescence modeling. Surf Coat Technol 399:126153

    Article  Google Scholar 

  9. Tang X et al (2022) Determining Young’s modulus of granite using accurate grain-based modeling with microscale rock mechanical experiments. Int J Rock Mech Min Sci 157:105167

    Article  Google Scholar 

  10. Le BD, Koval G, Chazallon C (2016) Discrete Elem model crack. Propag brittle Mater 40(4):583–595

    Google Scholar 

  11. Barenblatt GI, Salganik RL, Cherepanov GP (1962) On the nonsteady propagation of cracks. J Appl Math Mech 26(2):469–477

    Article  MATH  Google Scholar 

  12. Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary 9(3):495–507

    Google Scholar 

  13. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiao Y, Shi W, Luo J (2015) Indentation for evaluating cracking and delamination of thin coatings using finite element analysis. Vacuum 122:17–30

    Article  Google Scholar 

  15. Jiang S et al (2020) Modeling and estimation of hole-type flaws on cracking mechanism of SiC ceramics under uniaxial compression: a 2D DEM simulation. Theoret Appl Fract Mech 105:102398

    Article  Google Scholar 

  16. Matsuda Y, Iwase Y (2002) Numerical simulation of rock fracture using three-dimensional extended discrete element method. Earth Planets Space 54(4):367–378

    Article  Google Scholar 

  17. Kosteski L, Barrios R, Iturrioz I (2012) Crack propagation in elastic solids using the truss-like discrete element method. Int J Fract 174(2):139–161

    Article  Google Scholar 

  18. Tanaka M, Liu Y-F, Kagawa Y (2009) Identification of delamination through TGO stresses due to indentation testing of an EB-PVD TBC. J Mater Res 24(12):3533–3542

    Article  Google Scholar 

  19. Ghasemi M, Falahatgar S (2020) Discrete element simulation of damage evolution in coatings. Granular Matter 22(2):1–16

    Article  Google Scholar 

  20. Zhu W et al (2014) Numerical study on interaction of surface cracking and interfacial delamination in thermal barrier coatings under tension. Appl Surf Sci 315:292–298

    Article  Google Scholar 

  21. Besler R et al (2016) Discrete element simulation of metal ceramic composite materials with varying metal content. J Eur Ceram Soc 36(9):2245–2253

    Article  Google Scholar 

  22. Jiang S et al (2019) DEM modeling of crack coalescence between two parallel flaws in SiC ceramics. Ceram Int 45(12):14997–15014

    Article  Google Scholar 

  23. Zha X et al (2013) Discrete element modeling of metal skinned sandwich composite panel subjected to uniform load. Comput Mater Sci 69:73–80

    Article  Google Scholar 

  24. Qian L et al (2003) Tensile damage evolution behavior in plasma-sprayed thermal barrier coating system. Surf Coat Technol 173(2–3):178–184

    Article  Google Scholar 

  25. Yao W et al (2012) Acoustic emission analysis on tensile failure of air plasma-sprayed thermal barrier coatings. Surf Coat Technol 206(18):3803–3807

    Article  Google Scholar 

  26. Li B et al (2016) Influence of heat treatments on the microstructure as well as mechanical and tribological properties of NiCrAlY-Mo-Ag coatings. J Alloys Compd 686:503–510

    Article  Google Scholar 

  27. Ye N-y et al (2015) Effect of δ phase on mechanical properties of GH4169 alloy at room temperature. J Iron Steel Res Int 22(8):752–756

    Article  Google Scholar 

  28. Manrique-Sanchez L et al (2022) Random generation of 2D PFC microstructures through DEM gravimetric methods. Road Mater Pavement Des 23(4):925–941

    Article  Google Scholar 

  29. Itasca C (2008) PFC2D-Particle flow code in 2 dimensions, version 4.0 user’s manual. Itasca Consulting Group, Minneapolis

    Google Scholar 

  30. Tan Y et al (2019) Simulation of ceramic grinding mechanism based on discrete element method. Int J Comput Methods 16(04):1843008

    Article  MATH  Google Scholar 

  31. Bartsch M et al (2005) Interfacial fracture toughness measurement of thick ceramic coatings by indentation. In: Key engineering materials. Trans Tech Publ

  32. Yuan W, Wang G (2018) Indentation of a two-dimensional bonded elastic layer with surface tension. arXiv:1802.09363

  33. Long J et al (2012) Two-dimensional hertzian contact problem with surface tension. Int J Solids Struct 49(13):1588–1594

    Article  Google Scholar 

  34. XU ZH, H. HMARD, CAO X (2010) Preparation and characterization of La2Zr2O7 coating with the addition of Y2O3 by EB-PVD. J Alloys Compd 492:701–705

    Article  Google Scholar 

  35. Zhang D et al (2020) Microstructure and thermal & mechanical properties of La2Zr2O7@ YSZ composite ceramic. Ceram Int 46(4):4737–4747

    Article  Google Scholar 

  36. Bai M et al (2021) Phase stability and interfacial bonding strength of rare earth zirconate novel thermal barrier coatings. Vacuum 58(4):12–20

    Google Scholar 

  37. Kumar R, Kumar K, Chowdhury A (2017) Discrepancies in the hardness data and the role of grinding-induced surface effects for a porous zirconate ceramic. J Am Ceram Soc 100(4):1717–1723

    Article  Google Scholar 

  38. Panich N, Sun Y (2004) Effect of penetration depth on indentation response of soft coatings on hard substrates: a finite element analysis. Surf Coat Technol 182(2–3):342–350

    Article  Google Scholar 

  39. Drory M, Hutchinson J (1994) Diamond coating of titanium alloys. Science 263(5154):1753–1755

    Article  Google Scholar 

  40. Meijers P (1968) The contact problem of a rigid cylinder on an elastic layer. Appl Sci Res 18(1):353–383

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Y.F. Li greatly appreciates the support from the Natural Science Foundation of Tianjin (21JCYBJC01400) and the China Scholarship Council (CSC) Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yafeng Li or Jing Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Li, Y., Wang, L. et al. Discrete element modeling of delamination behavior in thermal barrier coating. Comp. Part. Mech. 10, 1019–1029 (2023). https://doi.org/10.1007/s40571-022-00545-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00545-y

Keywords

Navigation