Skip to main content
Log in

Effect of numerical speed of sound and density diffusion on SPH modeling of rigid body migration in plane Poiseuille flow

  • Original Research
  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Migration pattern of a neutrally buoyant object is primarily controlled by the lateral pressure gradient displaying high sensitivity to pressure disturbances in the flow field. Smoothed particle hydrodynamics (SPH) in its standard form is known to exhibit spurious oscillations in the pressure field. A commonly used approach is to introduce numerical diffusion inside the continuity equation for a smoother pressure field creating the popular \(\delta \)-SPH variant. This study focuses on the dependence of lateral pressure gradient evolution on numerical speed of sound and density diffusion for a neutrally buoyant circular cylinder in plane Poiseuille flow. Simulations with and without numerical density diffusion are compared for different numerical speeds of sound in weakly compressible SPH (WCSPH) framework. The \(\delta \)-SPH formulation is observed to display increased pressure oscillations for higher speeds of sound resulting in loss of equilibrium. A scaling correction to the free parameter in \(\delta \)-SPH formulation is proposed. The proposed correction is noted to reduce the pressure oscillations as well as density gradients across the fluid–structure interface significantly, increase overall stability of the scheme and as a result, assist the rigid body to achieve steady motion regardless of the release position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data supporting this study will be made available upon reasonable request for academic use and within the limitations of the provided informed consent by the corresponding author upon acceptance.

References

  1. Gingold Robert A, Monaghan Joseph J (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  2. Lucy Leon B (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  3. Monaghan Joe J (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703

    Article  MathSciNet  MATH  Google Scholar 

  4. Antuono Matteo, Colagrossi Andrea, Marrone Salvatore, Molteni Diego (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181(3):532–549

    Article  MathSciNet  MATH  Google Scholar 

  5. Nestor Ruairi M, Basa Mihai, Lastiwka Martin, Quinlan Nathan J (2009) Extension of the finite volume particle method to viscous flow. J Comput Phys 228(5):1733–1749

    Article  MathSciNet  MATH  Google Scholar 

  6. Lind Steven J, Rui Xu, Stansby Peter K, Rogers Benedict D (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499–1523

    Article  MathSciNet  MATH  Google Scholar 

  7. Andrea Colagrossi B, Bouscasse Matteo Antuono, Marrone Salvatore (2012) Particle packing algorithm for SPH schemes. Comput Phys Commun 183(8):1641–1653

    Article  MathSciNet  MATH  Google Scholar 

  8. Monaghan Joseph J, Gingold Robert A (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389

    Article  MATH  Google Scholar 

  9. Vila JP (1999) On particle weighted methods and smooth particle hydrodynamics. Math Models Methods Appl Sci 9(02):161–209

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferrari Angela, Dumbser Michael, Toro Eleuterio F, Armanini Aronne (2009) A new 3D parallel SPH scheme for free surface flows. Comput Fluids 38(6):1203–1217

    Article  MathSciNet  MATH  Google Scholar 

  11. Molteni Diego, Colagrossi Andrea (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872

    Article  MathSciNet  MATH  Google Scholar 

  12. Cercos-Pita JL, Dalrymple RA, Herault A (2016) Diffusive terms for the conservation of mass equation in SPH. Appl Math Model 40(19–20):8722–8736

    Article  MathSciNet  MATH  Google Scholar 

  13. Green Mashy D, Vacondio Renato, Peiró Joaquim (2019) A smoothed particle hydrodynamics numerical scheme with a consistent diffusion term for the continuity equation. Comput Fluids 179:632–644

    Article  MathSciNet  MATH  Google Scholar 

  14. Meringolo Domenico D, Marrone Salvatore, Colagrossi Andrea, Liu Yong (2019) A dynamic \(\delta \)-SPH model: how to get rid of diffusive parameter tuning. Comput Fluids 179:334–355

    Article  MathSciNet  MATH  Google Scholar 

  15. Canelas Ricardo B, Domínguez Jose M, Crespo Alejandro JC, Gómez-Gesteira Moncho, Ferreira Rui ML (2015) A smooth particle hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. Int J Numer Methods Fluids 78(9):581–593

    Article  MathSciNet  Google Scholar 

  16. Cercos-Pita JL, Antuono M, Colagrossi A, Souto-Iglesias A (2017) SPH energy conservation for fluid–solid interactions. Comput Methods Appl Mech Eng 317:771–791

    Article  MathSciNet  MATH  Google Scholar 

  17. Hashemi MR, Fatehi R, Manzari MT (2012) A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows. Int J Non-Linear Mech 47(6):626–638

    Article  Google Scholar 

  18. Tofighi Nima, Ozbulut Murat, Rahmat Amin, Feng James J, Yildiz Mehmet (2015) An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids. J Comput Phys 297:207–220

    Article  MathSciNet  MATH  Google Scholar 

  19. Pazouki Arman, Negrut Dan (2015) A numerical study of the effect of particle properties on the radial distribution of suspensions in pipe flow. Comput Fluids 108:1–12

    Article  MathSciNet  MATH  Google Scholar 

  20. Dehnen Walter, Aly Hossam (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425(2):1068–1082

    Article  Google Scholar 

  21. Wang Jing, Joseph Daniel D (2003) Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids. Phys Fluids 15(8):2267–2278

    Article  MathSciNet  MATH  Google Scholar 

  22. Price Daniel James (2004) Magnetic fields in Astrophysics. PhD thesis, University of Cambridge Cambridge, UK

  23. Shao Songdong, Lo Edmond YM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800

    Article  Google Scholar 

  24. Pan Tsorng-Whay, Glowinski Roland (2002) Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow. J Comput Phys 181(1):260–279

    Article  MathSciNet  MATH  Google Scholar 

  25. Inamuro Takaji, Maeba Koji, Ogino Fumimaru (2000) Flow between parallel walls containing the lines of neutrally buoyant circular cylinders. Int J Multiph Flow 26(12):1981–2004

    Article  MATH  Google Scholar 

  26. Jc Crespo A, Gómez-Gesteira M, Dalrymple Robert A (2007) Boundary conditions generated by dynamic particles in SPH methods. Comput Mater Continua 5(3):173–184

    MathSciNet  MATH  Google Scholar 

  27. Monaghan Joseph J, Kos Andrew (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–155

    Article  Google Scholar 

  28. Skillen Alex, Lind Steven, Stansby Peter K, Rogers Benedict D (2013) Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave–body interaction. Comput Methods Appl Mech Eng 265:163–173

    Article  MathSciNet  MATH  Google Scholar 

  29. Crespo Alejandro JC, Domínguez José M, Rogers Benedict D, Moncho Gómez-Gesteira S, Longshaw RJFB Canelas, Renato Vacondio A, Barreiro O García-Feal (2015) Dualsphysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216

    Article  MATH  Google Scholar 

  30. Joseph DD, Ocando D (2002) Slip velocity and lift. J Fluid Mech 454:263–286

    Article  MathSciNet  MATH  Google Scholar 

  31. Feng James, Hu Howard H, Joseph Daniel D (1994) Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J Fluid Mech 277:271–301

    Article  MATH  Google Scholar 

  32. Antuono Matteo, Colagrossi Andrea, Marrone Salvatore (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183(12):2570–2580

    Article  MathSciNet  MATH  Google Scholar 

  33. Monaghan Joe J (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  34. Morris Joseph P, Fox Patrick J, Zhu Yi (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226

    Article  MATH  Google Scholar 

  35. Sun PN, Colagrossi Andrea, Marrone Salvatore, Antuono Matteo, Zhang AM (2018) Multi-resolution delta-plus-SPH with tensile instability control: towards high Reynolds number flows. Comput Phys Commun 224:63–80

    Article  MathSciNet  Google Scholar 

  36. Fernández-Gutiérrez David, Zohdi Tarek I (2020) Delta Voronoi smoothed particle hydrodynamics, \(\delta \)-VSPH. J Comput Phys 401:109000

    Article  MathSciNet  MATH  Google Scholar 

  37. Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189(4760):209–210

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the reviewers whose insightful comments and suggestions helped us improve and clarify this study.

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doruk Isik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, D., He, Z. Effect of numerical speed of sound and density diffusion on SPH modeling of rigid body migration in plane Poiseuille flow. Comp. Part. Mech. 10, 503–517 (2023). https://doi.org/10.1007/s40571-022-00511-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00511-8

Keywords

Navigation