Skip to main content
Log in

Sloshing study on prismatic LNG tank for the vertical location of the rotational center

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Experimental and numerical analyses for sloshing tests are configured by conceptual cases of risk scenarios. However, in some of them, unrealistic settings are employed, which can overestimate the results. In this work, numerical sloshing analyses are developed by the potential theory with SESAM HydroD and the Moving Particle Semi-implicit (MPS) method. The first is to identify the sloshing effect on the global motions of a Liquefied Natural Gas (LNG) tanker and resonant periods for a range of filling fractions in prismatic tanks and to generate realistic operative conditions. Then, the MPS method is applied to compare the influence of the ship’s rotational center location on the exerted forces and moments due to sloshing. The results illustrate that the sloshing effects must be included in the global motion responses of LNG tankers with partially filled tanks, comparing the dynamic pressure time histories and the additional contribution of total sway forces and total roll moments on LNG prismatic tank considering different locations of the rotational center. This study shows the importance of selecting the real operative conditions, as the rotational center location, which can provoke lower or higher non-real contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Xue MA, Chen Y, Zheng J, Qian L, Yuan X (2019) Fluid dynamics analysis of sloshing pressure distribution in storage ships of different shapes. Ocean Eng 192:106582. https://doi.org/10.1016/j.oceaneng.2019.106582

    Article  Google Scholar 

  2. Kuo JF, Campbell RB, Ding Z, Hoie SM, Rinehart AJ, Sandström RE, Yung TW, Greer MN, Danaczko MA (2009) LNG tank sloshing assessment methodology-The new generation. Int J Offshore Polar Eng 19(4):241–253

    Google Scholar 

  3. Det Norske Veritas (2006) Classification notes no.30.9. Sloshing analysis of LNG membrane tanks

  4. Lloyd´s Register (2005) Ship Right, Design and Construction, Additional Design Procedures: Comparative sloshing analysis of LNG ship containment system. Lloyd’s Register Marine Business

  5. Bureau Veritas (2011) Guidance note NI 554 DT R00 E. Design sloshing loads for LNG membrane tanks

  6. Okamoto T, Kawahara M (1992) Two dimensional sloshing analysis by the arbitrary Lagrangian-Eulerian finite element method. Struct Eng/Earthq Eng 8(4):207s–216s. https://doi.org/10.2208/jscej.1992.39

    Article  Google Scholar 

  7. Sueyoshi M, Kashiwagi M, Naito S (2008) Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method. J Mar Sci Technol 13:85–94. https://doi.org/10.1007/s00773-007-0260-y

    Article  Google Scholar 

  8. Pan XJ, Zhang HX, Lu YT (2008) Numerical simulation of viscous liquid sloshing by moving-particle semi-implict method. J Mar Sci Appl 7:184–189. https://doi.org/10.1007/s11804-008-7047-3

    Article  Google Scholar 

  9. Cao Y, Graczyk M, Pákozdi C, Lu H, Huang F, Yang C (2010) Sloshing load due to liquid motion in a tank, Comparison of potential flow, CFD, and experiment solutions. International Offshore and Polar Engineering Conference, Beijing, China, June 2010. Paper Number: ISOPE-I-10-174

  10. Hou L, Li F, Wu Ch (2012) A numerical study of liquid sloshing in a two-dimensional tank under external excitations. J Marine Sci Appl 11:305–310. https://doi.org/10.1007/s11804-012-1137-y

    Article  Google Scholar 

  11. Saghi H, Ketabdari MJ (2012) Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM. J Mar Sci Appl 11(4):417–426. https://doi.org/10.1007/s11804-012-1151-0

    Article  Google Scholar 

  12. Chen Y, Xue MA (2018) Numerical simulation of liquid sloshing with different filling levels using OpenFOAM and experimental validation. Water 10(12):1752. https://doi.org/10.3390/w10121752

    Article  Google Scholar 

  13. Saripilli JR, Sen D (2018) Sloshing-coupled ship motion algorithm form estimation of slosh-induced pressures. J Mar Sci Appl 17(3):312–329. https://doi.org/10.1007/s11804-018-0031-7

    Article  Google Scholar 

  14. Zhang Y, Wan D (2018) MPS-FEM coupled method for sloshing flows in an elastic tank. Ocean Eng 152:416–427. https://doi.org/10.1016/j.oceaneng.2017.12.008

    Article  Google Scholar 

  15. Liu X, Lin P, Shao S (2014) An ISPH simulation of coupled structure interaction with free surface flows. J Fluids Struct 48:46–61. https://doi.org/10.1016/j.jfluidstructs.2014.02.002

    Article  Google Scholar 

  16. Ning DZ, Song WH, Liu YL, Teng B (2012) A boundary element investigation of liquid sloshing in coupled horizontal and vertical excitation. J Appl Math. https://doi.org/10.1155/2012/340640

    Article  MATH  Google Scholar 

  17. Zheng X, You Y, Ma Q, Khayyer A, Shao S (2018) A comparative study on violent sloshing with complex baffles using the ISPH method. Appl Sci 8(6):904. https://doi.org/10.3390/app8060904

    Article  Google Scholar 

  18. Yang Ch, Zhang H, Su H, Sheng Z (2018) Numerical simulation of sloshing using the MPS-FSI method with Large Eddy Simulation. China Ocean Eng 32(3):278–287. https://doi.org/10.1007/s13344-018-0029-6

    Article  Google Scholar 

  19. Lo EY-M, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24(5):275–286. https://doi.org/10.1016/S0141-1187(03)00002-6

    Article  Google Scholar 

  20. Chu ChR, Wu YR, Wu TR, Wang ChY (2018) Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng 167:282–292. https://doi.org/10.1016/j.oceaneng.2018.08.049

    Article  Google Scholar 

  21. Ünal UO, Bilici G, Akyıldız H (2019) Liquid sloshing in a two-dimensional rectangular tank: A numerical investigation with a T-shaped baffle. Ocean Eng 187:106183. https://doi.org/10.1016/j.oceaneng.2019.106183

    Article  Google Scholar 

  22. Nasar T, Sannasiraj SA (2019) Sloshing dynamics and performance of porous baffle arrangements in a barge carrying liquid tank. Ocean Eng 183:24–39. https://doi.org/10.1016/j.oceaneng.2019.04.022

    Article  Google Scholar 

  23. Kim SP, Chung SM, Shin WJ, Cho DS, Park JCh (2018) Experimental study on sloshing reduction effects of baffles linked to a spring system. Ocean Eng 170:136–147. https://doi.org/10.1016/j.oceaneng.2018.10.001

    Article  Google Scholar 

  24. Zhang Ch, Su P, Ning D (2019) Hydrodynamic study of an anti-sloshing technique using floating foams. Ocean Eng 175:62–70. https://doi.org/10.1016/j.oceaneng.2019.02.014

    Article  Google Scholar 

  25. Bellezi CA, Cheng LY, Okada T, Arai M (2019) Optimized perforated bulkhead for sloshing mitigation and control. Ocean Eng 187:106171. https://doi.org/10.1016/j.oceaneng.2019.106171

    Article  Google Scholar 

  26. Zhao D, Hu Z, Chen G, Lim S, Wang S (2018) Nonlinear sloshing in rectangular tanks under forced excitation. Int J Nav Archit Ocean Eng 10(5):545–565. https://doi.org/10.1016/j.ijnaoe.2017.10.005

    Article  Google Scholar 

  27. Trimulyono A, Hashimoto H, Matsuda A (2019) Experimental validation of single- and two-phase smoothed particle hydrodynamics on sloshing in a prismatic tank. J Mar Sci Eng 7(8):247. https://doi.org/10.3390/jmse7080247

    Article  Google Scholar 

  28. Kim Y (2001) Numerical simulation of sloshing flows with impact load. Appl Ocean Res 23(1):53–62. https://doi.org/10.1016/S0141-1187(00)00021-3

    Article  Google Scholar 

  29. SESAM User Manual, HYDROD, Wave load & stability analysis of fixed and floating structures. Det Norske Veritas Software. Norway, 2011

  30. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434. https://doi.org/10.13182/NSE96-A24205

    Article  Google Scholar 

  31. Lee BH, Park JC, Kim MH, Hwang SC (2011) Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Comput Methods Appl Mech Eng 200(9–12):1113–1125. https://doi.org/10.1016/j.cma.2010.12.001

    Article  MATH  Google Scholar 

  32. Sanchez-Mondragon J, Vazquez-Hernandez AO (2018) Solitary wave collisions by double-dam-broken simulations with the MPS method. Eng Comput 35(1):53–70. https://doi.org/10.1108/EC-04-2016-0142

    Article  Google Scholar 

  33. Sanchez-Mondragon J (2016) On the stabilization of unphysical pressure oscillations in MPS method simulations. Int J Numer Methods Fluids 82(8):471–492. https://doi.org/10.1002/fld.4227

    Article  MathSciNet  Google Scholar 

  34. Jaime-Ledezma LE, Sanchez-Mondragon J, Vazquez-Hernandez AO, Morales-Viscaya JA, Ochoa-Ruiz G (2019) Simulation of breaking waves on slop beaches integrating the MPS method into Iwagaki wave theory. J Braz Soc Mech Sci Eng 41:170. https://doi.org/10.1007/s40430-019-1672-4

    Article  Google Scholar 

  35. Tanaka M, Masunaga T (2010) Stabilization and smoothing of pressure in MPS method by quasy-compressibility. J Comput Phys 229(11):4279–4290. https://doi.org/10.1016/j.jcp.2010.02.011

    Article  MATH  Google Scholar 

  36. Xu T, Jin YC (2016) Improvements for accuracy and stability in a weakly-compressible particle method. Comput Fluids 137:1–14. https://doi.org/10.1016/j.compfluid.2016.07.014

    Article  MathSciNet  MATH  Google Scholar 

  37. Sanchez-Mondragon J, Hernandez-Fontes JV, Vazquez-Hernandez AO, Esperança PT (2019) Wet Dam-Break simulation using the SPS-LES turbulent contribution on the WCMPS method to evaluate green water events. Comput Part Mech 7:705–724. https://doi.org/10.1007/s40571-019-00302-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Mexican Petroleum Institute and Fondo Sectorial CONACYT-SENER-Hidrocarburos through the Laboratory of Numerical Simulation of Metocean and Hydrodynamics Phenomena, located at the Exploration and Production Technologies Center, Boca del Rio, Veracruz, Mexico. The author J. Sanchez-Mondragon thanks Dirección de Cátedras CONACYT for the financial support granted during the research included in this manuscript.

Funding

This study was funded by Fondo Sectorial CONACYT-SENER-Hidrocarburos and by Dirección de Cátedras CONACYT through the Laboratory of Numerical Simulation of Metocean and Hydrodynamics Phenomena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sanchez-Mondragon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix-Gonzalez, I., Sanchez-Mondragon, J. & Cruces-Giron, A.R. Sloshing study on prismatic LNG tank for the vertical location of the rotational center. Comp. Part. Mech. 9, 843–862 (2022). https://doi.org/10.1007/s40571-021-00450-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00450-w

Keywords

Navigation