Skip to main content
Log in

A fully coupled particle method for dynamic analysis of saturated soil

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Among other numerical issues, it is well known that the finite element method (FEM) lacks objectivity in reproducing high deformation rates due to extreme external actions. In geotechnical applications, the coupling of large solid deformations with the pore fluid flow is a critical subject, being one of the multiple scenarios where FEM could have restricted applications. In order to overcome the aforementioned numerical drawbacks, the generic theoretical approach presented in this work is implemented in the context of an explicit numerical method known as the material point method (MPM). Since the MPM can be viewed as a special Lagrangian FEM with particle quadrature and continuous mesh updating, the improved formulation and numerical implementation presented here are well suited for the study of coupled water pore pressure and soil deformation models. One important aspect of the presented coupled formulation is the assumption of two independent sets of Lagrangian material points for each phase. This characteristic leads to a numerical tool oriented to large deformations simulations in saturated porous media, with a fully coupled thermodynamically consistent formulation. To illustrate its robustness and accuracy, the approach is applied to two different real engineering applications: progressive failure modeling of a granular slope and river levees. The obtained results show that the physics of fluid flow through porous media is adequately represented in each analyzed case. It is also proved that it accurately represents the kinematics of soil skeleton and water phase for fully saturated cases, ensuring mass conservation of all constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abe K, Soga K, Bandara S (2014) Material point method for coupled hydromechanical problems. J Geotech Geoenviron Eng 140(3):04013033

    Google Scholar 

  2. Alonso E, Zabala F (2011) Progressive failure of aznalcllar dam using the material point method. Geotechnique 61(9):795–808

    Google Scholar 

  3. Bal ARL, Dang TS, Meschke G (2020) A 3D particle finite element model for the simulation of soft soil excavation using hypoplasticity. Comput Part Mech 7:151–172

    Google Scholar 

  4. Bandara S, Soga K (2015) Coupling of soil deformation and pore fluid flow using material point method. Comput Geotech 63:199–214

    Google Scholar 

  5. Belytschko T, Lu Y (1994) Element free galerkin method. Int J Numer Meth Eng 37:229–256

    MathSciNet  MATH  Google Scholar 

  6. Beneyto P, Rado HD, Mroginski J, Awruch A (2015) A versatile mathematical approach for environmental geomechanic modeling based on stress state decomposition. Appl Math Model 39(22):6880–6896

    MathSciNet  MATH  Google Scholar 

  7. Blanco-Fernandez E, Castro-Fresno D, del Coz Diaz J, Navarro-Manso A, Alonso-Martinez M (2015) Flexible membranes anchored to the ground for slope stabilisation: Numerical modelling of soil slopes using SPH. Comput Geotech 78:1–10

    Google Scholar 

  8. Borja RI, Koliji A (2009) On the effective stress in unsaturated porous continua with double porosity. J Mech Phys Solids 57(8):1182–1193

    MATH  Google Scholar 

  9. Bui H, Nguyen G (2017) A coupled fluid-solid sph approach to modelling flow through deformable porous media. Int J Solids Struct 125:244–264

    Google Scholar 

  10. Carrier W (2003) Goodbye, hazen; hello, kozeny-carman. J Geotech Geoenviron 129(11):1054–1056

    Google Scholar 

  11. Ceccato F, Beuth L, Vermeer P, Simonini P (2016) Two-phase material point method applied to the study of cone penetration. Comput Geotech 80:440–452

    Google Scholar 

  12. Dávalos C, Cante J, Hernández J, Oliver J (2015) On the numerical modeling of granular material flows via the particle finite element method (PFEM). Int J Solids Struct 71:99–125

    Google Scholar 

  13. Di Rado HA, Beneyto PA, Mroginski JL, Awruch AM (2009) Influence of the saturation-suction relationship in the formulation of non-saturated soils consolidation models. Math Comput Model 49(5–6):1058–1070

    MathSciNet  MATH  Google Scholar 

  14. Fan H, Bergel GB, Li S (2016) A hybrid peridynamics-SPH simulation of soil fragmentation by blast loads of buried explosive. Int J Impact Eng 87:14–27

    Google Scholar 

  15. Fan H, Li S (2017) A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads. Comput Meth Appl Mech 318:349–381

    MathSciNet  MATH  Google Scholar 

  16. Fatemizadeh F, Stolle D, Moormann C (2017) Studying hydraulic failure in excavations using two-phase material point method. Proc Eng 175:250–257

    Google Scholar 

  17. Goodarzi M, Rouainia M (2017) Modelling slope failure using a quasi-static MPM with a non-local strain softening approach. Proc Eng 175:220–225

    Google Scholar 

  18. Gray W, Hassanizadeh S (1991) Unsaturated flow theory including interfacial phenomena. Water Resour 27:1855–1863

    Google Scholar 

  19. Hassanizadeh S, Gray W (1979) General conservation equation for multiphase sistems: 1, averaging procedures. Adv Water Resour 2:131–144

    Google Scholar 

  20. Hassanizadeh S, Gray W (1979) General conservation equation for multiphase sistems: 2, mass momenta, energy and entropy equations. Adv Water Resour 2:191–203

    Google Scholar 

  21. Hassanizadeh S, Gray W (1980) General conservation equation for multiphase sistems: 3, constitutive theory for porous media flow. Adv Water Resour 3:25–40

    Google Scholar 

  22. Idelsohn S, Oñate E (2006) To mesh or not to mesh: that is the question. Comput Meth Appl Mech 195(37–40):4681–4696

    MathSciNet  MATH  Google Scholar 

  23. Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Meth Geomech 37(15):2502–2522

    Google Scholar 

  24. Klapp J, Areu-Rangel O, Cruchaga M, Aranguiz R, Bonasia R, Seura MG, Silva-Casar R (2020) Tsunami hydrodynamic force on a building using a sph real scale numerical simulation. Nat Hazards 100:89–109

    Google Scholar 

  25. Lei X, He S, Chen X, Wong H, Wu L, Liu E (2020) A generalized interpolation material point method for modelling coupled seepage-erosion-deformation process within unsaturated soils. Adv Water Resour 141:103578

    Google Scholar 

  26. Lewis RW, Schrefler BA (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, New York

    MATH  Google Scholar 

  27. Liang D, Zhao X, Martinelli M (2017) MPM simulations of the interaction between water jet and soil bed. Proc Eng 175:242–249

    Google Scholar 

  28. Liu X, Wang Y, Li DQ (2019) Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methods. Comput Geotech 111:301–312

    Google Scholar 

  29. Mackenzie-Helnwein P, Arduino P, Shin W, Mooney M, Miller G (2010) Modeling strategies for multiphase drag interactions using the material point method. Int J Numer Meth Eng 83(3):295–322

    MathSciNet  MATH  Google Scholar 

  30. Masta C, Arduino P, Miller G, Mackenzie-Helnwein P (2014) Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures. Comput Geosci 18(5):817–830

    MathSciNet  Google Scholar 

  31. Monaghan J (1983) On the problem of penetration in particle methods. J Comput Phys 82:1–15

    MATH  Google Scholar 

  32. Monaghan J (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759

    MathSciNet  MATH  Google Scholar 

  33. Monaghan J, Gingold R (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389

    MATH  Google Scholar 

  34. Monforte L, Arroyo M, Carbonell J, Gens A (2018) Coupled effective stress analysis of insertion problems in geotechnics with the particle finite element method. Comput Geotech 101:114–129

    Google Scholar 

  35. Mroginski JL, Di Rado HA, Beneyto PA, Awruch AM (2010) A finite element approach for multiphase fluid flow in porous media. Math Comput Simul 81:76–91

    MathSciNet  MATH  Google Scholar 

  36. Mroginski JL, Etse G (2013) A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables. Comput Geotech 49:7–17

    Google Scholar 

  37. Mroginski JL, Etse G (2014) Discontinuous bifurcation analysis of thermodynamically consistent gradient poroplastic materials. Int J Solids Struct 51:1834–1846

    Google Scholar 

  38. Oñate E, Idelsohn S, Pin FD, Aubry R (2004) The particle finite element method. An Overview Int J Comput Methods 1(2):267–307

    MATH  Google Scholar 

  39. Raymond SJ, Jones B, Williams JR (2018) A strategy to couple the material point method (MPM) and smoothed particle hydrodynamics (SPH) computational techniques. Comput Part Mech 5:49–58

    Google Scholar 

  40. Schrefler BA, Pesavento F (2004) Multiphase flow in deforming porous material. Comput Geotech 31:237–250

    Google Scholar 

  41. Schreyer-Bennethum L (2007) Theory of flow and deformation of swelling porous materials at the macroscale. Comput Geotech 34(4):267–278

    Google Scholar 

  42. Su YC, Tao J, Jiang S, Chen Z, Lu JM (2020) Study on the fully coupled thermodynamic fluid-structure interaction with the material point method. Comput Part Mech 7:225–240

    Google Scholar 

  43. Vardon P, Wang B, Hicks M (2017) Slope failure simulations with MPM. J Hydrodynam Ser. B 29(3):445–451

    Google Scholar 

  44. Wu Q, An Y, Liu Q (2015) SPH-Based simulations for slope failure considering soil-rock interaction. Proc Eng 102:1824–1849

    Google Scholar 

  45. Yamaguchi Y, Takase S, Moriguchi S, Terada K (2020) Solid-liquid coupled material point method for simulation of ground collapse with fluidization. Comput Part Mech 7:209–223

    Google Scholar 

  46. Yang WC, Shekhar K, Arduino P, Mackenzie-Helnwein P, Miller G (2017) Modeling tsunami induced debris impacts on bridge structures using the material point method. Proc Eng 175:175–181

    Google Scholar 

  47. Yerro A, Alonso E, Pinyol N (2015) The material point method for unsaturated soils. Geotechnique 65(3):201–217

    Google Scholar 

  48. Zhang D, Zou Q, VanderHeyden W, Ma X (2008) Material point method applied to multiphase flows. J Comput Phys 227(6):3159–3173

    MathSciNet  MATH  Google Scholar 

  49. Zhang H, Wang K, Chena Z (2009) Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput Meth Appl Mech 198(17–20):1456–1472

    MATH  Google Scholar 

  50. Zhang X, Chen Z, Liu Y (2017) The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases. Elsevier, Amsterdam

    Google Scholar 

  51. Zhang X, Krabbenhoft K, Pedroso DM, Lyamin A, Sheng D, da Silva M, Wang D (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142

    Google Scholar 

Download references

Funding

This work was partly funded by the Consejo Nacional de Investigaciones Cientficas y Técnicas (CONICET, Argentina) as well as Secretaría de General de Ciencia y Técnica de la Universidad Nacional del Nordeste (UNNE), Argentina (Grants PI 17D002). Also, the authors would like to acknowledge the financial support from the Secretaría de Ciencia y Tecnología de la Universidad Tecnológica Nacional Facultad Regional Resistencia (UTN-FRRe, Argentina, Grant PID 4912TC (2018)) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina, Grants PICTO-UNNE-2019-00014 and PICT-2018-01607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Mroginski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Matrix expressions of Eqs. (29)–(30)

Appendix: Matrix expressions of Eqs. (29)–(30)

In the following, the matrix expressions of discrete momentum balance equation of Eqs. (25) and (26) are presented:

$$\begin{aligned} \mathbf {Fi}^{w}_{I} =&-\sum _{wp=1}^{N_{w}} \sum ^{N_{s}}_{sp=1} N^{w}_{wp_{I}} nR^{w} \left( N^{w}_{wp_J}v^{w}_{wp_J} - N^{s}_{sp_J}v^{s}_{sp_J}\right) \Omega ^{w}_{wp}\nonumber \\&\quad + \sum _{p=1}^{N_{w}} \mathbf {G}^{w}_{I} n\bar{p}^{w}\Omega ^{w}_{p} \end{aligned}$$
(38)
$$\begin{aligned} \mathbf {Fe}^{w}_{I} =&\sum _{p=1}^{N_{w}} b^{w}_{p} m^{w}_{p} N^{w}_{p_I} - \int _{\partial \Omega _{w}} N^{w}_{p_{I}} t^{w}_{p}\text {d}\partial \Omega _{w} \end{aligned}$$
(39)
$$\begin{aligned} \mathbf {Fi}^{sw}_{I} =&- \sum _{p=1}^{N_{s}} \mathbf {G}^{s}_{I} \ \varvec{\sigma }'_{p} \ \Omega ^{s}_{p} + \sum _{p=1}^{N_{w}} \mathbf {G}^{w}_{I} \ \mathbf {I} \ \bar{p}^{w} \ \Omega ^{w}_{p} \end{aligned}$$
(40)
$$\begin{aligned} \mathbf {Fe}^{sw}_{I} =&\sum _{p=1}^{N_{s}} b^{s}_{p} m^{s}_{p} N^{s}_{p_I} + \sum _{p=1}^{N_{w}} b^{w}_{p} m^{w}_{p} N^{w}_{p_I}\nonumber \\&\quad +\int _{\partial \Omega _{s}} N^{s}_{p_{I}} t^{s}_{p}\text {d}\partial \Omega _{s}\nonumber \\&\quad + \int _{\partial \Omega _{w}} N^{w}_{p_{I}} t^{w}_{p}\text {d}\partial \Omega _{w} \end{aligned}$$
(41)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mroginski, J.L., Castro, H.G., Podestá, J.M. et al. A fully coupled particle method for dynamic analysis of saturated soil. Comp. Part. Mech. 8, 845–857 (2021). https://doi.org/10.1007/s40571-020-00373-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00373-y

Keywords

Navigation