Skip to main content
Log in

Magneto-rheological damper modeling by using dissipative particle dynamics method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A mesoscale modeling of magneto-rheological damper is performed by using dissipative particle dynamics method. Bounce-back and periodic boundary conditions are used, and the model is validated by Couette flow, Poiseuille flow and flow through a micro-tube. Shear stress and damping behavior are probed with considering hysteresis condition. Three electrical coils are placed inside MR damper, control damping force by applying magnetic strength distribution as step function pattern. Results show that by increasing both of average strength of magnetic field and shear rate, shear stress increases. The effects of different parameters such as frequency and amplitude of piston velocity, magnetic field strength, diameter of magnetic particles and strength of dissipative forces on damping force and hysteresis condition are investigated by using Bouc–Wen model. Results show by increasing frequency and decreasing amplitude and magnetic field strength, hysteresis range and strength of damping force reduce. Sensitivity analysis performed on MR fluid parameters reveals that the weight of magnetic particles and the dissipative force have the most effect on strength of damping force so that, by increasing dissipative force, damping force increases linearly, but enhancement in the weight of magnetic particles leads to damping force firstly increases and then reduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. BASF Co. (2009) Badische Anilin- und Soda-Fabrik. www.basf.com

  2. Schurter K, Roschke PN (2001) Fuzzy modeling of a magneto rheological damper using ANFIS. Proc IEEE Fuzzy Conf 2:22–27

    Google Scholar 

  3. Butz T, Stryk O (2002) Modelling and simulation of electro and magneto rheological fluid dampers. Z Angew Math Mech 82:3–20

    Article  Google Scholar 

  4. Chooi O (2008) Design, modelling and testing of magneto rheological (MR) dampers using analytical flow solutions. Comp Struct 86:473–482

    Article  Google Scholar 

  5. Dominguez A, Sedaghati R, Stiharu I (2008) Modeling and application of MR dampers in semi-adaptive structures. Comp Struct 86:407–415

    Article  Google Scholar 

  6. Bai X, Wang D, Fu H (2013) Principle, modeling, and testing of an annular-radial-duct magneto rheological damper. Sens Actuator Phys 201:302–309

    Article  Google Scholar 

  7. Mazlan S, Iryani I, Kikuchi T, Zamuzuri H (2014) Design of magneto rheological damper with a combination of shear and squeeze modes. Mater Des 54:87–95

    Article  Google Scholar 

  8. Sternberg A, Zemp R, Carlos J (2014) Multiphysics behavior of a magneto rheological damper and experimental validation. Eng Struct 69:194–205

    Article  Google Scholar 

  9. Attia EM, Elsodany NM, El-Gamal HA, Elgohary MA (2017) Theoretical and experimental study of magneto rheological fluid disc brake. Alex Eng J 56:189–200

    Article  Google Scholar 

  10. Kumbhar BK, Patil SR, Sawant SM (2015) Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application. Eng Sci Technol J 18:432–438

    Google Scholar 

  11. Huang J, Zhang JQ, Yang Y, Wei YQ (2002) Analysis and design of a cylindrical magneto-rheological fluid brake. Comput Struct 129:559–562

    Google Scholar 

  12. Wang HY, Ni YQ, Ko JM, Spencer BF (2005) Magneto-rheological tuned liquid column dampers (MR-TLCDs) for vibration mitigation of tall buildings: modelling and analysis of open-loop control. Comput Struct 83:2023–2034

    Article  Google Scholar 

  13. Fujitani J, Shiozaki Y, Hiwatashi T, Hata K, Tomura T, Sodeyama H, Soda S (2010) A research and development of smart building structures by magneto-rheological damper. Adv Build Technol 1:473–480

    Google Scholar 

  14. Wang JY, Ni YQ, Ko JM, Spencer BF (2011) Semi-active TLCDS using magneto-rheological fluids for vibration mitigation of tall buildings. Adv Build Technol 2:537–544

    Google Scholar 

  15. Jain VK, Ranjan P, Suri VK, Komanduri R (2010) Chemo-mechanical magneto-rheological finishing (CMMRF) of silicon for microelectronics applications. Manuf Technol 59:323–328

    Article  Google Scholar 

  16. Shimada K, Wu Y, Matsuo Y, Yamamoto K (2005) Float polishing technique using new tool consisting of micro magnetic clusters. J Mater Process Technol 162:690–695

    Article  Google Scholar 

  17. Khatri N, Mishra V, Sharma R, Garg H, Karar V (2017) Improving the surface finish of diamond turned silicon with magneto-rheological finishing. Mater Today Proc 4:10158–10162

    Article  Google Scholar 

  18. Sadiq A, Shunmugam MS (2010) A novel method to improve finish on non-magnetic surfaces in magneto-rheological abrasive honing. Process Tribol 43:1122–1126

    Article  Google Scholar 

  19. Wu Y, Shimada K, Wong YC (2003) Effect of magnetic cluster and magnetic field on polishing using magnetic compound fluid (MCF). J Magn Magn Mater 262:242–247

    Article  Google Scholar 

  20. Allen MP, Tildesley DJ (1987) Computer simulation of liquids, vol 2. Oxford Clarendon Press, Oxford, pp 32–35

    MATH  Google Scholar 

  21. Rapaport DC (1995) The art of molecular dynamics simulation, vol 3. Cambridge University Press, Cambridge, pp 54–57

    Google Scholar 

  22. Haile JM (1992) Molecular dynamics simulation, elementary methods, vol 1. Wiley, New York, pp 23–32

    Google Scholar 

  23. Satoh A (2003) Introduction to molecular-micro simulation of colloidal dispersions, vol 3. Elsevier, Amesterdam, pp 45–55

    Google Scholar 

  24. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  25. Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-sphere suspensions under steady shear. Europhys Lett 21:363–368

    Article  Google Scholar 

  26. Espanol P (1995) Hydrodynamics from dissipative particle dynamics. Phys Rev 52:1734–1742

    MathSciNet  Google Scholar 

  27. Marsh CA, Backx G, Ernst MH (1997) Static and dynamic properties of dissipative particle dynamics. Phys Rev 56:1676–1691

    Article  Google Scholar 

  28. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows, vol 2. Oxford University Press, Oxford, pp 32–35

    Google Scholar 

  29. Sapinski B, Filus J (2003) Analysis of parametric models of MR linear damper. Dept Process Control Univ Min Metall 3:26–33

    Google Scholar 

  30. Li WH, Yao GZ, Chen G, Yeo SH, Yap FF (2000) Testing and steady state modeling of a linear MR damper under sinusoidal loading. Nanyang Technol Univ 3:32–36

    Google Scholar 

  31. Wen YK (1976) Method for random vibration of hysteretic systems. ASCE J Eng Mech Div 102:249–263

    Google Scholar 

  32. Spencer BF, Dyke SJ, Sain MK, Carlson JD (1996) Phenomenological model of a magneto-rheological damper. ASCE J Eng Mech 12:23–26

    Google Scholar 

  33. Revenga M, Zuniga N, Espanol P (1998) Dissipative particle dynamics with energy conservation, heat conduction. Int J Mod Phys 9:1319–1328

    Article  Google Scholar 

  34. Duong-Kong D, Phan-Tien N, Fan X (2004) An implementation of no-slip boundary conditions in DPD. J Comput Mech 35:24–29

    Article  Google Scholar 

  35. Phan-Thien N (2013) Understanding viscoelasticity, vol 2. Springer, FL, pp 113–117

    Book  Google Scholar 

  36. Engin T, Evrensel C, Gordaninejad F (2005) Numerical simulation of laminar flow of water-based magneto-rheological fluids in micro tubes with wall roughness effect. Int Commun Heat Mass Transf 32:1016–1025

    Article  Google Scholar 

  37. Irving JH, Kirkwood JG (1950) Calculation of stress in molecular dynamic models. J Chem Phys 18:817–829

    Article  MathSciNet  Google Scholar 

  38. Yanga Z, Wangb H, Hanc X, Fangd W (2011) Damping force of MR damper analysis and experimental. Int Conf Electron Mech Eng Inf Technol 32:32–44

    Google Scholar 

  39. Carlson DJ (2004) MR technology workshop. Lord Corp 1:22–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mohsen Shahmardan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafarian Eidgahi Moghadam, M., Shahmardan, M.M. & Norouzi, M. Magneto-rheological damper modeling by using dissipative particle dynamics method. Comp. Part. Mech. 7, 567–592 (2020). https://doi.org/10.1007/s40571-019-00280-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00280-x

Keywords

Navigation